OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 1947–1956

Temporal coupled-mode theory for resonant apertures

Lieven Verslegers, Zongfu Yu, Peter B. Catrysse, and Shanhui Fan  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 1947-1956 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001947


View Full Text Article

Enhanced HTML    Acrobat PDF (1095 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop the coupled-mode theory for nanoscale resonant apertures. We show that the maximum transmission and absorption cross sections for subwavelength resonant apertures are only related to the wavelength of the incident light and the directivity of the aperture’s radiation pattern. A general relation between the transmission cross section and the directivity is proven from the coupled-mode theory. As a specific example, we apply the theory to a nanoslit aperture in a metallic film and obtain excellent agreement with direct numerical simulations.

© 2010 Optical Society of America

OCIS Codes
(050.1220) Diffraction and gratings : Apertures
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics
(260.5740) Physical optics : Resonance
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: July 7, 2010
Manuscript Accepted: July 24, 2010
Published: September 9, 2010

Citation
Lieven Verslegers, Zongfu Yu, Peter B. Catrysse, and Shanhui Fan, "Temporal coupled-mode theory for resonant apertures," J. Opt. Soc. Am. B 27, 1947-1956 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-1947


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  2. K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  3. A. Arbouet, D. Christofilos, N. Del Fatti, F. Vallée, J. R. Huntzinger, L. Arnaud, P. Billaud, and M. Broyer, “Direct measurement of the single-metal-cluster optical absorption,” Phys. Rev. Lett. 93, 127401 (2004). [CrossRef] [PubMed]
  4. O. Muskens, N. Del Fatti, F. Vallee, J. R. Huntzinger, P. Billaud, and M. Boyer, “Single metal nanoparticle absorption spectroscopy and optical characterization,” Appl. Phys. Lett. 88, 063109 (2006). [CrossRef]
  5. M. Husnik, M. W. Klein, N. Feth, M. König, J. Niegemann, K. Busch, S. Linden, and M. Wegener, “Absolute extinction cross-section of individual magnetic split-ring resonators,” Nat. Photonics 2, 614–617 (2008). [CrossRef]
  6. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express 17, 24084–24095 (2009). [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  8. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  9. S. Blair and A. Nahata, “Focus issue: Extraordinary light transmission through subwavelength structured surfaces—Introduction,” Opt. Express 12, 3618 (2004). [CrossRef] [PubMed]
  10. P. B. Catrysse and S. Fan, “Propagating plasmonic mode in nanoscale apertures and its implications for extraordinary transmission,” J. Nanophotonics 2, 021790 (2008). [CrossRef]
  11. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  12. F. J. García de Abajo, “Light transmission through a single cylindrical hole in a metallic film,” Opt. Express 10, 1475–1484 (2002). [PubMed]
  13. X. Shi, L. Hesselink, and L. R. Thornton, “Ultrahigh light transmission through a C-shaped nanoaperture,” Opt. Lett. 28, 1320–1322 (2003). [CrossRef] [PubMed]
  14. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95, 103901 (2005). [CrossRef] [PubMed]
  15. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74, 153411 (2006). [CrossRef]
  16. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001). [CrossRef]
  17. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  18. R. E. Hamam, A. Karalis, J. D. Joannopoulos, and M. Soljacic, “Coupled-mode theory for general free-space resonant scattering of waves,” Phys. Rev. A 75, 053801 (2007). [CrossRef]
  19. Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114, 7324–7329 (2010). [CrossRef]
  20. J. Bravo-Abad, L. Martín-Moreno, and F. J. García-Vidal, “Transmission properties of a single metallic slit: From the subwavelength regime to the geometrical-optics limit,” Phys. Rev. E 69, 026601 (2004). [CrossRef]
  21. O. Mata-Mendez and J. Avendaño, “Some properties of the optical resonances in a single subwavelength slit,” J. Opt. Soc. Am. A 24, 1687–1694 (2007). [CrossRef]
  22. F. Yang and J. R. Sambles, “Resonant transmission of microwaves through a narrow metallic slit,” Phys. Rev. Lett. 89, 063901 (2002). [CrossRef] [PubMed]
  23. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001). [CrossRef] [PubMed]
  24. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92, 147401 (2004). [CrossRef] [PubMed]
  25. R. Gordon, “Light in a subwavelength slit in a metal: Propagation and reflection,” Phys. Rev. B 73, 153405 (2006). [CrossRef]
  26. P. Lalanne, J. P. Hugonin, and J. C. Rodier, “Theory of surface plasmon generation at nanoslit apertures,” Phys. Rev. Lett. 95, 263902 (2005). [CrossRef]
  27. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90, 167401 (2003). [CrossRef] [PubMed]
  28. Q. Min and R. Gordon, “Surface plasmon microcavity for resonant transmission through a slit in a gold film,” Opt. Express 16, 9708–9713 (2008). [CrossRef] [PubMed]
  29. Z. C. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96, 233901 (2006). [CrossRef] [PubMed]
  30. F. J. García-Vidal, L. Martín-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83, 4500–4502 (2003). [CrossRef]
  31. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85, 642–644 (2004). [CrossRef]
  32. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13, 6815–6820 (2005). [CrossRef] [PubMed]
  33. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nano-scale slit arrays in a metallic film,” Nano Lett. 9, 235–238 (2009). [CrossRef]
  34. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Planar metallic nanoscale slit lenses for angle compensation,” Appl. Phys. Lett. 95, 071112 (2009). [CrossRef]
  35. L. Verslegers, P. B. Catrysse, Z. Yu, W. Shin, Z. C. Ruan, and S. Fan, “Phase front design with metallic pillar arrays,” Opt. Lett. 35, 844–846 (2010). [CrossRef] [PubMed]
  36. L. Verslegers, P. B. Catrysse, Z. Yu, and S. Fan, “Deep-subwavelength focusing and steering of light in an aperiodic metallic waveguide array,” Phys. Rev. Lett. 103, 033902 (2009). [CrossRef] [PubMed]
  37. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89, 151116 (2006). [CrossRef]
  38. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through sub-wavelength slits,” Opt. Lett. 34, 686–688 (2009). [CrossRef] [PubMed]
  39. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, 2nd ed. (Wiley, 1998).
  40. S. Drabowitch, A. Papiernik, H. Griffiths, J. Encinas, and B. L. Smith, Modern Antennas (Chapman & Hall, 1998).
  41. A. Alu and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2, 307–310 (2008). [CrossRef]
  42. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping for solar cells,” for Proc. Natl. Acad. Sci. (to be published).
  43. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled mode theory for Fano resonances in optical resonators,” J. Opt. Soc. Am. A 20, 569–573 (2003). [CrossRef]
  44. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116–130 (1962). [CrossRef] [PubMed]
  45. G. Veronis and S. Fan, in Surface Plasmon Nanophotonics, M.L.Brongersma and P.G.Kik, eds. (Springer, 2007), p. 169. [CrossRef]
  46. The directivity, as we defined it, is analogous to the directivity in antenna theory, defined as the ratio of U(θ), the radiation intensity in a certain direction, to Uave, the average radiation intensity: D(θ)=U(θ)/Uave (two-dimensional case).
  47. The factor G is called the (power) gain in antenna theory . We do not adopt this name since in the optics literature gain is commonly related to amplification, which is not the case here.
  48. D.R.Lide, ed., CRC Handbook of Chemistry and Physics, 88th ed. (CRC, 2007).
  49. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31, 1519–1521 (2006). [CrossRef] [PubMed]
  50. L. Tang, S. E. Kocabas, S. Latif, A. K. Okyay, D.-S. Ly-Gagnon, K. C. Saraswat, and D. A. B. Miller, “Nanometer-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008). [CrossRef]
  51. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1, 438–483 (2009). [CrossRef]
  52. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94, 4632–4642 (2003). [CrossRef]
  53. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308, 1607–1609 (2005). [CrossRef] [PubMed]
  54. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Single-molecule fluorescence enhancements produced by a Bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited