OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 1965–1977

Modes in dielectric or ferrite gyrotropic slab and circular waveguides, longitudinally magnetized, with open and completely or partially filled wall

E. Cojocaru  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 1965-1977 (2010)
http://dx.doi.org/10.1364/JOSAB.27.001965


View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A unitary analytical approach making use of duality properties of Maxwell’s equations is developed for determining the propagation modes in slab and circular waveguides that comprise a gyrotropic material of dielectric or ferrite type, at which either the permittivity or the permeability tensor is altered by a longitudinally applied quasistatic magnetic field. Both types of electric and magnetic walls are considered. Closed form dimensionless relations are obtained for completely or partially filled and open-wall configurations, with the limit case of unmagnetized gyrotropic material being included. Examples are given for both the slab and the circular gyrotropic waveguides at arbitrary values of material parameters.

© 2010 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.3820) Materials : Magneto-optical materials
(230.2240) Optical devices : Faraday effect
(230.7390) Optical devices : Waveguides, planar
(350.5500) Other areas of optics : Propagation

ToC Category:
Materials

History
Original Manuscript: June 1, 2010
Revised Manuscript: July 26, 2010
Manuscript Accepted: July 28, 2010
Published: September 9, 2010

Citation
E. Cojocaru, "Modes in dielectric or ferrite gyrotropic slab and circular waveguides, longitudinally magnetized, with open and completely or partially filled wall," J. Opt. Soc. Am. B 27, 1965-1977 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-1965


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. S. Pershan, “Magneto-optical effects,” J. Appl. Phys. 38, 1482–1490 (1967). [CrossRef]
  2. I. V. Lindell, “Field decomposition in special gyrotropic media,” Microwave Opt. Technol. Lett. 12, 29–31 (1996). [CrossRef]
  3. A. Eroglu and J. K. Lee, “Wave propagation and dispersion characteristics for a nonreciprocal electrically gyrotropic medium,” PIER 62, 237–260 (2006). [CrossRef]
  4. H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, and A. F. Popkov, “Applications of magneto-optical waveguides in integrated optics: review,” J. Opt. Soc. Am. B 22, 240–253 (2005). [CrossRef]
  5. R. A. Waldron, Ferrites: An Introduction for Microwave Engineers (Van Nostrand, 1961).
  6. B. M. Dillon, A. A. P. Gibson, and J. P. Webb, “Cut-off and phase constants of partially filled axially magnetized, gyromagnetic waveguides using finite elements,” IEEE Trans. Microwave Theory Tech. 41, 803–808 (1993). [CrossRef]
  7. D. Yevick, “A guide to electrical field propagation techniques for guided-wave optics,” Opt. Quantum Electron. 26, S185–S197 (1994). [CrossRef]
  8. L. Zhang and S. Xu, “Edge-element analysis of anisotropic waveguides with full permittivity and permeability matrices,” Int. J. Infrared Millim. Waves 16, 1351–1360 (1995). [CrossRef]
  9. E. Cojocaru, “Third-order triangular finite elements for waveguiding problems,” arXiv:1003.5609.
  10. P. Lüsse, P. Stuwe, J. Schüle, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12, 487–494 (1994). [CrossRef]
  11. A. B. Fallahkhair, K. S. Li, and T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008). [CrossRef]
  12. P. J. B. Clarricoats and D. E. Chambers, “Properties of cylindrical waveguides containing isotropic and anisotropic media,” Proc. IEE 110, 2163–2173 (1963).
  13. W. E. Salmond and C. Yeh, “Ferrite-filled elliptical waveguides. I. Propagation characteristics,” J. Appl. Phys. 41, 3210–3220 (1970). [CrossRef]
  14. J. Helszajn and A. A. P. Gibson, “Mode nomenclature of circular gyromagnetic and anisotropic waveguides with magnetic and open walls,” IEE Proc., Part H 134, 488–496 (1987).
  15. M. L. Kales, “Modes in wave guides containing ferrites,” J. Appl. Phys. 24, 604–608 (1953). [CrossRef]
  16. I. V. Lindell and A. H. Sihvola, “Electromagnetic boundary and its realization with anisotropic metamaterial,” Phys. Rev. E 79, 026604 (2009). [CrossRef]
  17. J. R. Gillies and P. Hlawiczka, “Elliptically polarized modes in gyrotropic waveguides: II. An alternative treatment of the longitudinally magnetized case,” J. Phys. D: Appl. Phys. 10, 1891–1904 (1977). [CrossRef]
  18. P. Hlawiczka, “A gyrotropic waveguide with dielectric boundaries: the longitudinally magnetized case,” J. Phys. D: Appl. Phys. 11, 1157–1166 (1978). [CrossRef]
  19. R. E. Colin, Field Theory of Guided Waves (IEEE, 1991).
  20. C. T. Tai, “Evanescent modes in a partially filled gyromagnetic rectangular wave guide,” J. Appl. Phys. 31, 220–221 (1960). [CrossRef]
  21. T. E. Murphy, “Optical modesolver,” http://www.photonics.umd.edu/.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited