OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 1991–1997

Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon

V. V. Kotlyar and S. S. Stafeev  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 1991-1997 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (516 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the radial finite-difference time domain method we numerically show that the illumination of a conical glass microaxicon of base radius 7 μ m and height 6 μ m (numerical aperture NA = 0.6 ) by a radially polarized annular R-TEM 01 laser mode of wavelength λ = 1 μ m produces, 20 nm apart from the cone apex, a sharp focus of transverse diameter FWHM = 0.30 λ and longitudinal (axial) width FWHM z = 0.08 λ . The focal spot area at half-maximum intensity is HMA = 0.071 λ 2 . For comparison the focus diameter reported here is 1.7 times smaller than the diameter of the minimal diffraction spot (Airy disk, NA = 1 ) of FWHM = 0.51 λ , with its area being 2.87 times smaller than that of the Airy disk HMA = 0.204 λ 2 . Also it is smaller than the diameter of a focal spot formed by a lens with NA = 0.6 in an immersion medium n = 1.5 , FWHM = 0.51 λ / n   NA = 0.55 λ , smaller than the diffraction limit in the medium ( n = 1.5 , NA = 1 ) FWHM = 0.51 λ / n = 0.33 λ and smaller than the focusing limit for the Bessel beam ( NA = 1 ) FWHM = 0.36 λ .

© 2010 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: June 11, 2010
Manuscript Accepted: July 18, 2010
Published: September 15, 2010

V. V. Kotlyar and S. S. Stafeev, "Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon," J. Opt. Soc. Am. B 27, 1991-1997 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “Superlens as matching device,” arXiv:cond-mat/0501438.
  2. L. Novotny and B. Hecht, Principles of Nano-optics (Cambridge University Press, 2006).
  3. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000). [CrossRef] [PubMed]
  4. R. J. Blaikie and D. O. S. Melville, “Imaging through planar silver lenses in the optical near field,” J. Opt. A, Pure Appl. Opt. 7, S176–S183 (2005). [CrossRef]
  5. D. O. S. Melville and R. J. Blaikie, “Super-resolution imaging through a planar silver layer,” Opt. Express 13, 2127–2134 (2005). [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction limited optical imaging with a silver superlens,” Science 308, 534–537 (2005). [CrossRef] [PubMed]
  7. V. A. Podolskiy and E. E. Narimanov, “Near-sighted superlens,” Opt. Lett. 30, 75–77 (2005). [CrossRef] [PubMed]
  8. R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, 1290–1292 (2004). [CrossRef]
  9. J. B. Pendry, “Perfect cylindrical lenses,” Opt. Express 11, 755–760 (2003). [CrossRef] [PubMed]
  10. V. A. Podolskiy, A. K. Sarychev, and V. M. Shalaev, “Plasmon modes and negative refraction in metal nanowire composites,” Opt. Express 11, 735–745 (2003). [CrossRef] [PubMed]
  11. V. M. Shalaev, W. Cai, U. K. Chettiar, H. Yuan, A. K. Sarychev, V. P. Drachev, and A. V. Kildishev, “Negative index of refraction in optical metamaterials,” Opt. Lett. 30, 3356–3358 (2005). [CrossRef]
  12. A. Berrier, M. Mulot, M. Swillo, M. Qiu, L. Thylen, A. Talneau, and S. Anand, “Negative refraction at infrared wavelength in a two-dimensional photonic crystal,” Phys. Rev. Lett. 93, 073902 (2004). [CrossRef] [PubMed]
  13. A. A. Govyadinov and V. A. Podolskiy, “Metamaterial photonic funnels for subdiffraction light compression and propagation,” Phys. Rev. B 73, 155108 (2006). [CrossRef]
  14. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative refractive index media,” J. Opt. Soc. Am. B 23, 498–505 (2006). [CrossRef]
  15. Z. Jacob, L. V. Alekseyev, and E. E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006). [CrossRef] [PubMed]
  16. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686–1688 (2007). [CrossRef] [PubMed]
  17. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927–929 (2007). [CrossRef] [PubMed]
  18. H. Liu, Shivanand, and K. J. Webb, “Subwavelength imaging opportunities with planar uniaxial anisotropic lenses,” Opt. Lett. 33, 2568–2570 (2008). [PubMed]
  19. A. Husakou and J. Herrmann, “Superfocusing of light below the diffraction limit by photonic crystals with negative refractive index,” Opt. Express 12, 6491–6497 (2004). [CrossRef] [PubMed]
  20. X. Wang, Z. F. Ren, and K. Kempa, “Unrestricted superlensing in a triangular two dimensional photonic crystal,” Opt. Express 12, 2919–2924 (2004). [CrossRef] [PubMed]
  21. S. Yang, C. Hong, and H. Yang, “Focusing concave lens using photonic crystals with magnetic materials,” J. Opt. Soc. Am. A 23, 956–959 (2006). [CrossRef]
  22. T. Matsumoto, K. Eom, and T. Baba, “Focusing of light by negative refraction in a photonic crystal slab superlens on silicon-on-insulator substrate,” Opt. Lett. 31, 2786–2788 (2006). [CrossRef] [PubMed]
  23. H. Chien and C. Chen, “Focusing of electromagnetic waves by periodic arrays of air holes with gradually varying radii,” Opt. Express 14, 10759–10764 (2006). [CrossRef] [PubMed]
  24. Q. Wu, J. M. Gibbons, and W. Park, “Graded negative index lens by photonic crystals,” Opt. Express 16, 16941–16949 (2008). [CrossRef] [PubMed]
  25. S. B. Ippolito, B. B. Goldberg, and M. S. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001). [CrossRef]
  26. I. Golub, “Solid immersion axicon: maximizing nondiffracting or Bessel beam resolution,” Opt. Lett. 32, 2161–2163 (2007). [CrossRef] [PubMed]
  27. D. R. Mason, M. V. Jouravlev, and K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35, 2007–2009 (2010). [CrossRef] [PubMed]
  28. Y. Lin, W. Seka, J. H. Eberly, H. Huang, and D. L. Brown, “Experimental investigation of Bessel beam characteristics,” Appl. Opt. 31, 2708–2713 (1992). [CrossRef] [PubMed]
  29. S. Ruschin and A. Leizer, “Evanescent Bessel beams,” J. Opt. Soc. Am. A 15, 1139–1143 (1998). [CrossRef]
  30. T. Grosjean, D. Courjon, and C. Bainier, “Smallest lithographic marks generated by optical focusing systems,” Opt. Lett. 32, 976–978 (2007). [CrossRef] [PubMed]
  31. Y. Kozawa and S. Sato, “Generation of a radially polarized laser beam by use of a conical Brewster prism,” Opt. Lett. 30, 3063–3065 (2005). [CrossRef] [PubMed]
  32. J. Li, K. Ueda, M. Musha, A. Shirakawa, and L. Zhong, “Generation of radially polarized mode in Yb fiber laser by using a dual conical prism,” Opt. Lett. 31, 2969–2971 (2006). [CrossRef] [PubMed]
  33. J. Li, K. Ueda, M. Musha, A. Shirakawa, and Z. Zhang, “Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain filter,” Opt. Lett. 32, 1360–1362 (2007). [CrossRef] [PubMed]
  34. K. Yonezawa, Y. Kozawa, and S. Sato, “Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal,” Opt. Lett. 31, 2151–2153 (2006). [CrossRef] [PubMed]
  35. A. Mehta, J. D. Brown, P. Srinivasan, R. C. Rumpf, and E. G. Jhonson, “Spatially polarizing autocloned elements,” Opt. Lett. 32, 1935–1937 (2007). [CrossRef] [PubMed]
  36. U. Levy, C. Tsai, L. Pang, and Y. Fainman, “Engineering space-variant inhomogeneous media for polarization control,” Opt. Lett. 29, 1718–1720 (2004). [CrossRef] [PubMed]
  37. G. M. Lerman and U. Levy, “Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm,” Opt. Lett. 33, 2782–2784 (2008). [CrossRef] [PubMed]
  38. V. V. Kotlyar and S. S. Stafeev, “Sharply focusing a radially polarized laser beam using a gradient Mikaelian’s microlens,” Opt. Commun. 282, 459–464 (2009). [CrossRef]
  39. A. Bouhelier, J. Renger, M. R. Beversluis, and L. Novotny, “Plasmon-coupled tip-enhanced near-field optical microscopy,” J. Microsc. 210, 220–224 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited