OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2009–2013

Photonic localization of interface modes at the boundary between metal and Fibonacci quasiperiodic structure

Xiao-Ning Pang, Jian-Wen Dong, and He-Zhou Wang  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 2009-2013 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigated the interface modes in a heterostructure consisting of a semi-infinite metallic layer and a semi-infinite Fibonacci quasiperiodic structure. Various properties of the interface modes, such as their spatial localizations, self-similarities, and multifractal properties, are studied. The interface modes decay exponentially in different ways, and the highest localized mode is found to be a mode in the lower stable gap with the largest gap width. A localization index is introduced to understand the localization properties of the interface modes. We found that the localization index of the interface modes in some of the stable gaps will converge to two slightly different constants related to the parity of the Fibonacci generation. In addition, the localization-delocalization transition is also found in the interface modes of the transient gaps.

© 2010 Optical Society of America

OCIS Codes
(240.0240) Optics at surfaces : Optics at surfaces
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: June 22, 2010
Manuscript Accepted: July 24, 2010
Published: September 16, 2010

Xiao-Ning Pang, Jian-Wen Dong, and He-Zhou Wang, "Photonic localization of interface modes at the boundary between metal and Fibonacci quasiperiodic structure," J. Opt. Soc. Am. B 27, 2009-2013 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and C.-S. Hong, “Electromagnetic propagation in periodic stratified media. I. General theory,” J. Opt. Soc. Am. 67, 423–438 (1977). [CrossRef]
  2. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  3. P. Yeh, A. Yariv, and A. Y. Cho, “Optical surface waves in periodic layered media,” Appl. Phys. Lett. 32, 104–105 (1978). [CrossRef]
  4. F. Ramos-Mendieta and P. Halevi, “Surface electromagnetic waves in two-dimensional photonic crystals: Effect of the position of the surface plane,” Phys. Rev. B 59, 15112–15120 (1999). [CrossRef]
  5. T. B. Wang, C. P. Yin, W. Y. Liang, J. W. Dong, and H. Z. Wang, “Electromagnetic surface modes in one-dimensional photonic crystals with dispersive metamaterials,” J. Opt. Soc. Am. B 26, 1635–1640 (2009). [CrossRef]
  6. M. E. Sasin, R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett. 92, 251112 (2008). [CrossRef]
  7. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlain, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B 76, 165415 (2007). [CrossRef]
  8. S. Brand, M. A. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B 79, 085416 (2009). [CrossRef]
  9. A. Alù and N. Engheta, “Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency,” IEEE Trans. Antennas Propag. 51, 2558–2571 (2003). [CrossRef]
  10. J. W. Dong, J. Zeng, Q. F. Dai, and H. Z. Wang, “Universal condition for the existence of interface modes in the whole momentum space with arbitrary materials,” arXiv:0801.4117.
  11. X. B. Kang, W. Tan, Z. G. Wang, and H. Chen, “Optic Tamm states: The Bloch-wave-expansion method,” Phys. Rev. A 79, 043832 (2009). [CrossRef]
  12. G. Guan, H. Jiang, H. Li, Y. Zhang, H. Chen, and S. Zhu, “Tunneling modes of photonic heterostructures consisting of single-negative materials,” Appl. Phys. Lett. 88, 211112 (2006). [CrossRef]
  13. A. V. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B 72, 233102 (2005). [CrossRef]
  14. L. L. Lin and Z. Y. Li, “Interface states in photonic crystal heterostructures,” Phys. Rev. B 63, 033310 (2001). [CrossRef]
  15. Y. Lai, Z. Q. Zhang, C. H. Chan, and L. Tsang, “Gap structures and wave functions of classical waves in large-sized two-dimensional quasiperiodic structures,” Phys. Rev. B 74, 054305 (2006). [CrossRef]
  16. A. G. Barriuso, J. J. Monzón, L. L. Sánchez-Soto, and A. Felipe, “Comparing omnidirectional reflection from periodic and quasiperiodic one-dimensional photonic crystals,” Opt. Express 13, 3913–3920 (2005). [CrossRef] [PubMed]
  17. R. Merlin, K. Bajema, R. Clarke, F.-Y. Juang, and P. K. Bhattacharya, “Quasiperiodic GaAs-AlAs heterostructures,” Phys. Rev. Lett. 55, 1768–1770 (1985). [CrossRef] [PubMed]
  18. L. Dal Negro, C. J. Oton, Z. Gaburro, L. Pavesi, P. Johnson, A. Lagendijk, R. Righini, M. Colocci, and D. S. Wiersma, “Light transport through the band-edge states of Fibonacci quasicrystals,” Phys. Rev. Lett. 90, 055501 (2003). [CrossRef] [PubMed]
  19. G. Gumbs and M. K. Ali, “Dynamical maps, Cantor spectra, and localization for Fibonacci and related quasiperiodic lattices,” Phys. Rev. Lett. 60, 1081–1084 (1988). [CrossRef] [PubMed]
  20. F. Nori and J. P. Rodriguez, “Acoustic and electronic properties of one-dimensional quasicrystals,” Phys. Rev. B 34, 2207–2211 (1986). [CrossRef]
  21. R. B. Capaz, B. Koiller, and S. L. A. de Queiroz, “Gap states and localization properties of one-dimensional Fibonacci quasicrystals,” Phys. Rev. B 42, 6402–6407 (1990). [CrossRef]
  22. C. M. Soukoulis and E. N. Economou, “Localization in one-dimensional lattices in the presence of incommensurate potentials,” Phys. Rev. Lett. 48, 1043–1046 (1982). [CrossRef]
  23. M. Kohmoto, B. Sutherland, and C. Tang, “Critical wave functions and a Cantor-set spectrum of a one-dimensional quasicrystal model,” Phys. Rev. B 35, 1020–1033 (1987). [CrossRef]
  24. G. J. Jin, S. S. Kang, Z. D. Wang, A. Hu, and S. S. Jiang, “Coupled optical interface modes in a Fibonacci dielectric superlattice,” Phys. Rev. B 54, 11883–11886 (1996). [CrossRef]
  25. E. S. Zijlstra, A. Fasolino, and T. Janssen, “Existence and localization of surface states on Fibonacci quasicrystals: A tight-binding study,” Phys. Rev. B 59, 302–307 (1999). [CrossRef]
  26. Y. El Hassouani, H. Aynaou, E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and V. R. Velasco, “Surface electromagnetic waves in Fibonacci superlattices: Theoretical and experimental results,” Phys. Rev. B 74, 035314 (2006). [CrossRef]
  27. M. Kohmoto, B. Sutherland, and K. Iguchi, “Localization in optics: Quasiperiodic media,” Phys. Rev. Lett. 58, 2436–2438 (1987). [CrossRef] [PubMed]
  28. N. H. Liu, “Propagation of light waves in Thue–Morse dielectric multilayers,” Phys. Rev. B 55, 3543–3547 (1997). [CrossRef]
  29. T. Fujiwara, M. Kohmoto, and T. Tokihiro, “Multifractal wave functions on a Fibonacci lattice,” Phys. Rev. B 40, 7413–7416 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited