OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2014–2019

Single-mode laser emission at 825 nm from a photopumped cylindrical microresonator based on a polymer semiconductor

Takeyuki Kobayashi and Maroussia Vavasseur  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 2014-2019 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002014


View Full Text Article

Enhanced HTML    Acrobat PDF (454 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A near-infrared-emitting microlaser has been demonstrated, which is based on a semiconducting non-conjugated polymer. A luminescent polymer layer is formed on a silica optical fiber 125 μ m in diameter by self-assembly with poly(9-vinylcarbazole) containing an electron-transport material, 2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, and a near-infrared-emitting compound, 2-(6-(p-dimethylaminophenyl)-2,4-neopentylene-1,3,5-hexatrienyl)-3-ethylbenzothiazolium perchlorate. The cylindrical polymer microcavity shows laser emission at 825 nm when it is transversally photopumped at 532 nm with a nanosecond Nd:yttrium aluminum garnet laser. The resonance of the microcavity is characterized by a cavity quality factor Q = ( 2.7 ± 0.1 ) × 10 3 , which is determined from the laser spectral width. Furthermore, a threshold analysis is carried out by taking into account the effects of the ground-state absorption of the chromophore and Rayleigh scattering of the gain medium. The analysis shows that the minimum threshold lies in the vicinity of 824 nm, which is consistent with the experimentally observed laser emission line at 825 nm.

© 2010 Optical Society of America

OCIS Codes
(160.2540) Materials : Fluorescent and luminescent materials
(160.6000) Materials : Semiconductor materials
(250.3680) Optoelectronics : Light-emitting polymers
(140.3945) Lasers and laser optics : Microcavities
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 6, 2010
Revised Manuscript: August 1, 2010
Manuscript Accepted: August 5, 2010
Published: September 16, 2010

Citation
Takeyuki Kobayashi and Maroussia Vavasseur, "Single-mode laser emission at 825 nm from a photopumped cylindrical microresonator based on a polymer semiconductor," J. Opt. Soc. Am. B 27, 2014-2019 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-2014


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Suzuki, “Self-enhancement in the electroluminescence of a near-infrared ionic dye,” Appl. Phys. Lett. 76, 1543–1545 (2000). [CrossRef]
  2. H. Suzuki, “Infrared electroluminescence from an organic ionic dye containing no rare-earth ions,” Appl. Phys. Lett. 80, 3256–3258 (2002). [CrossRef]
  3. B. C. Thompson, L. G. Madrigal, M. R. Pinto, T.-S. Kang, K. S. Schanze, and J. R. Reynolds, “Donor-acceptor copolymers for red and near-infrared emitting PLEDs,” J. Polym. Sci., Part A: Polym. Chem. 43, 1417–1431 (2005). [CrossRef]
  4. C. Borek, K. Hanson, P. I. Djurovich, M. E. Thompson, K. Aznavour, R. Bau, Y. Sun, S. R. Forrest, J. Brooks, L. Michalski, and J. Brown, “Highly efficient, near-infrared electrophosphorescence from a Pt-metalloporphyrin complex,” Angew. Chem., Int. Ed. 46, 1109–1112 (2007). [CrossRef]
  5. Y. Yang, R. T. Farley, T. T. Steckler, S.-H. Eom, J. R. Reynolds, K. S. Schanze, and J. Xue, “Near infrared organic light-emitting devices based on donor-acceptor-donor oligomers,” Appl. Phys. Lett. 93, 163305 (2008). [CrossRef]
  6. R. G. Sun, Y. Z. Wang, Q. B. Zheng, H. J. Zhang, and A. J. Epstein, “1.54 μm infrared photoluminescence and electroluminescence from an erbium organic compound,” J. Appl. Phys. 87, 7589–7591 (2000). [CrossRef]
  7. Y. Kuwamura, Y. Wada, and S. Yanagida, “Near-infrared photoluminescence and electroluminescence of neodymium, erbium, and ytterbium complexes,” Jpn. J. Appl. Phys., Part 1 40, 350–356 (2001). [CrossRef]
  8. L. H. Slooff, A. Polman, F. Cacialli, R. H. Friend, G. A. Hebbink, F. C. J. M. van Veggel, and D. N. Reinhoudt, “Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex,” Appl. Phys. Lett. 78, 2122–2124 (2001). [CrossRef]
  9. B. S. Harrison, T. J. Foley, M. Bouguettaya, J. M. Boncella, J. R. Reynolds, K. S. Schanzea, J. Shim, P. H. Holloway, G. Padmanaban, and S. Ramakrishnan, “Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends,” Appl. Phys. Lett. 79, 3370–3372 (2001). [CrossRef]
  10. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, “Efficient near-infrared polymer nanocrystal light-emitting diodes,” Science 295, 1506–1508 (2002). [CrossRef] [PubMed]
  11. T. Kobayashi, M. Djiango, and W. J. Blau, “Near-infrared electroluminescence and stimulated emission from semiconducting non-conjugated polymer thin films,” J. Appl. Phys. 107, 023103 (2010). [CrossRef]
  12. M. Djiango, T. Kobayashi, W. J. Blau, B. Cai, K. Komatsu, and T. Kaino, “Near-infrared luminescent polymer waveguide with a 20 dB small-signal gain,” Appl. Phys. Lett. 92, 083306 (2008). [CrossRef]
  13. K. Yamashita, T. Kuro, K. Oe, and H. Yanagi, “Low threshold amplified spontaneous emission from near-infrared dye-doped polymeric waveguide,” Appl. Phys. Lett. 88, 241110 (2006). [CrossRef]
  14. T. Kobayashi, J.-B. Savatier, G. Jordan, W. J. Blau, Y. Suzuki, and T. Kaino, “Near-infrared laser emission from luminescent plastic waveguides,” Appl. Phys. Lett. 85, 185–187 (2004). [CrossRef]
  15. T. Kobayashi, M. Djiango, G. Jordan, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Laser emission at 0.8 μm from photopumped luminescent polymer microresonators,” Appl. Phys. Lett. 88, 181119 (2006). [CrossRef]
  16. M. Djiango, T. Kobayashi, and W. J. Blau, “Cavity-enhanced stimulated emission cross section in polymer microlasers,” Appl. Phys. Lett. 93, 143306 (2008). [CrossRef]
  17. S. Yuyama, T. Nakajima, K. Yamashita, and K. Oe, “Solid state organic laser emission at 970 nm from dye-doped fluorinated-polyimide planar waveguides,” Appl. Phys. Lett. 93, 023306 (2008). [CrossRef]
  18. G. Karve, B. Bihari, and R. T. Chen, “Demonstration of optical gain at 1.06 μm in a neodymium-doped polyimide waveguide,” Appl. Phys. Lett. 77, 1253–1255 (2000). [CrossRef]
  19. D. J. Morantz, B. G. White, and A. J. C. Wright, “Stimulated light emission by optical pumping and by energy transfer in organic molecules,” Phys. Rev. Lett. 8, 23–25 (1962). [CrossRef]
  20. F.P.Schäfer, ed., Dye Lasers, 3rd ed. (Springer-Verlag, 1990).
  21. Z. V. Vardeny, “Telecommunications: a boost for fibre optics,” Nature 416, 489–491 (2002). [CrossRef] [PubMed]
  22. D. Rezzonico, A. Guarino, C. Herzog, M. Jazbinsek, and P. Günter, “High-finesse laterally coupled organic–inorganic hybrid polymer microring resonators for VLSI photonics,” IEEE Photon. Technol. Lett. 18, 865–867 (2006). [CrossRef]
  23. M. Kuwata-Gonokami and K. Takeda, “Polymer whispering gallery mode lasers,” Opt. Mater. 9, 12–17 (1998). [CrossRef]
  24. R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: Pt. 1: Cabazole cations,” Polymer 24, 733–738 (1983). [CrossRef]
  25. R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 2. Polyvinylcarbazole films containing antimony pentachloride,” Polymer 24, 739–747 (1983). [CrossRef]
  26. R. H. Partridge, “Electroluminescence from polyvinylcarbazole films: 3. Electroluminescent devices,” Polymer 24, 748–754 (1983). [CrossRef]
  27. R. H. Partridge, “Electrochemiluminescence from polyvinylcarbazole films 4. Electrochemiluminescence using higher work function cathodes,” Polymer 24, 755–762 (1983). [CrossRef]
  28. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, “Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films,” J. Appl. Phys. 84, 4096–4108 (1998). [CrossRef]
  29. G. Heliotis, R. Xisa, D. D. C. Bradley, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Two-dimensional distributed feedback lasers using a broadband, red polyfluorene gain medium,” J. Appl. Phys. 96, 6959–6965 (2004). [CrossRef]
  30. T. Kobayashi, M. Flämmich, G. Jordan, R. D’Arcy, M. Rüther, W. J. Blau, Y. Suzuki, and T. Kaino, “Blue-green small-signal gain and saturation in a luminescent polymer gain medium,” Appl. Phys. Lett. 89, 131119 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited