OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2020–2025

FDTD analysis of the optical black hole

Christos Argyropoulos, Efthymios Kallos, and Yang Hao  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 2020-2025 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002020


View Full Text Article

Enhanced HTML    Acrobat PDF (704 KB) | SpotlightSpotlight on Optics Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An optical black hole is studied using a parallel radially dependent finite-difference time-domain (FDTD) simulation technique. The device requires non-dispersive metamaterial structures and is capable of broadband operation, based on transformation optics. Excellent absorption is demonstrated for different angles of wave incidence and illumination excitation types. In addition, a practical device, which is made to be matched to free space, is proposed, and the relevant physics is explored. Finally, peculiar phase distributions of the electromagnetic waves are observed inside the radially dependent permittivity material of the devices.

© 2010 Optical Society of America

OCIS Codes
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(160.3918) Materials : Metamaterials
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optical Devices

History
Original Manuscript: May 27, 2010
Manuscript Accepted: August 2, 2010
Published: September 16, 2010

Virtual Issues
October 7, 2010 Spotlight on Optics

Citation
Christos Argyropoulos, Efthymios Kallos, and Yang Hao, "FDTD analysis of the optical black hole," J. Opt. Soc. Am. B 27, 2020-2025 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-2020


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  3. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  4. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef] [PubMed]
  5. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009). [CrossRef]
  6. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009). [CrossRef]
  7. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922–12928 (2009). [CrossRef] [PubMed]
  8. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  9. J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009). [CrossRef] [PubMed]
  10. C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17, 8467–8475 (2009). [CrossRef] [PubMed]
  11. E. E. Narimanov and A. V. Kildishev, “Optical black hole: Broadband omnidirectional light absorber,” Appl. Phys. Lett. 95, 041106 (2009). [CrossRef]
  12. D. A. Genov, S. Zhang, and X. Zhang, “Mimicking celestial mechanics in metamaterials,” Nat. Phys. 5, 687–692 (2009). [CrossRef]
  13. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100, 207402 (2008). [CrossRef] [PubMed]
  14. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nature Mater. 9, 205–213 (2010). [CrossRef]
  15. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nature Mater. 9, 193–204 (2010). [CrossRef]
  16. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  17. E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79, 063825 (2009). [CrossRef]
  18. H. F. Ma, W. X. Jiang, X. M. Yang, X. Y. Zhou, and T. J. Cui, “Compact-sized and broadband carpet cloak and free-space cloak,” Opt. Express 17, 19947–19959 (2009). [CrossRef] [PubMed]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  20. C. Argyropoulos, Y. Zhao, and Y. Hao, “A radially-dependent dispersive finite-difference time-domain method for the evaluation of electromagnetic cloaks,” IEEE Trans. Antennas Propag. 57, 1432–1441 (2009). [CrossRef]
  21. C. Argyropoulos, E. Kallos, and Y. Hao, “Dispersive cylindrical cloaks under nonmonochromatic illumination,” Phys. Rev. E 81, 016611 (2010). [CrossRef]
  22. K. C. Chew and V. F. Fusco, “A parallel implementation of the finite difference time-domain algorithm,” Int. J. Numer. Model. 8, 293–299 (1995). [CrossRef]
  23. J.-P. Bérenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Multimedia

Multimedia FilesRecommended Software
» Media 1: MOV (323 KB)      QuickTime

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited