OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2035–2039

EIT-assisted large cross-Kerr nonlinearity in a four-level inverted-Y atomic system

J. Kou, R. G. Wan, Z. H. Kang, H. H. Wang, L. Jiang, X. J. Zhang, Y. Jiang, and J. Y. Gao  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 2035-2039 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002035


View Full Text Article

Enhanced HTML    Acrobat PDF (350 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A four-level inverted-Y scheme with an electromagnetically induced transparency (EIT) core is investigated for the enhancement of cross-Kerr effect in rubidium atoms. When detunings of the coupling and control fields are appropriately set, an enhanced EIT window is observed, and the induced phase shift of the probe field due to cross-phase modulation (XPM) is obtained by measuring the dispersive property of the probe transition. The maximal XPM phase shift is about 12° under the current experimental conditions. The experimental measurements agree well with the theoretical calculations. The enhanced XPM phase shift in such an atomic system has applications in quantum nonlinear optics and quantum information science.

© 2010 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(190.3270) Nonlinear optics : Kerr effect
(270.0270) Quantum optics : Quantum optics

ToC Category:
Atomic and Molecular Physics

History
Original Manuscript: July 2, 2010
Revised Manuscript: July 31, 2010
Manuscript Accepted: August 10, 2010
Published: September 16, 2010

Citation
J. Kou, R. G. Wan, Z. H. Kang, H. H. Wang, L. Jiang, X. J. Zhang, Y. Jiang, and J. Y. Gao, "EIT-assisted large cross-Kerr nonlinearity in a four-level inverted-Y atomic system," J. Opt. Soc. Am. B 27, 2035-2039 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-2035


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J. Kimble, “Measurement of conditional phase shifts for quantum logic,” Phys. Rev. Lett. 75, 4710–4713 (1995). [CrossRef] [PubMed]
  2. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi,“Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003). [CrossRef] [PubMed]
  3. S. Rebić, D. Vitali, C. Ottaviani, P. Tombesi, M. Artoni, F. Cataliotti, and R. Corbalán, “Polarization phase gate with a tripod atomic system,” Phys. Rev. A 70, 032317 (2004). [CrossRef]
  4. A. Joshi and M. Xiao, “Phase gate with a four-level inverted-Y system,” Phys. Rev. A 72, 062319 (2005). [CrossRef]
  5. J.-F. Roch, K. Vigneron, Ph. Grelu, A. Sinatra, J.-Ph. Poizat, and Ph. Grangier, “Quantum nondemolition measurements using cold trapped atoms,” Phys. Rev. Lett. 78, 634–637 (1997). [CrossRef]
  6. Y. F. Xiao, S. K. Özdemir, V. Gaddam, C. H. Dong, N. Imoto, and L. Yang, “Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity,” Opt. Express 16, 21462–21475 (2008). [CrossRef] [PubMed]
  7. M. D. Lukin and A. Imamoğlu, “Nonlinear optics and quantum entanglement of ultraslow single photons,” Phys. Rev. Lett. 84, 1419–1422 (2000). [CrossRef] [PubMed]
  8. K. Nemoto and W. J. Munro, “Nearly deterministic linear optical controlled-NOT gate,” Phys. Rev. Lett. 93, 250502 (2004). [CrossRef]
  9. Q. Lin and J. Li, “Quantum control gates with weak cross-Kerr nonlinearity,” Phys. Rev. A 79, 022301 (2009). [CrossRef]
  10. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997). [CrossRef]
  11. M. Fleischhauer, A. Imamoğlu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  12. H. Schmidt and A. Imamoğlu, “Giant Kerr nonlinearities obtained by electromagnetically induced transparency,” Opt. Lett. 21, 1936–1938 (1996). [CrossRef] [PubMed]
  13. H. Schmidt and A. Imamoğlu, “High-speed properties of a phase-modulation scheme based on electromagnetically induced transparency,” Opt. Lett. 23, 1007–1009 (1998). [CrossRef]
  14. Z. B. Wang, K. P. Marzlin, and B. C. Sanders, “Large cross-phase modulation between slow copropagating weak pulses in R87b,” Phys. Rev. Lett. 97, 063901 (2006). [CrossRef] [PubMed]
  15. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003). [CrossRef] [PubMed]
  16. Y. F. Chen, C. Y. Wang, S. H. Wang, and I. A. Yu, “Low-light-level cross-phase-modulation based on stored light pulses,” Phys. Rev. Lett. 96, 043603 (2006). [CrossRef] [PubMed]
  17. S. J. Li, X. D. Yang, X. M. Cao, C. H. Zhang, C. D. Xie, and H. Wang, “Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system,” Phys. Rev. Lett. 101, 073602 (2008). [CrossRef] [PubMed]
  18. X. D. Yang, S. J. Li, C. H. Zhang, and H. Wang, “Enhanced cross-Kerr nonlinearity via electromagnetically induced transparency in a four-level tripod atomic system,” J. Opt. Soc. Am. B 26, 1423–1434 (2009). [CrossRef]
  19. Y. X. Han, J. T. Xiao, Y. H. Liu, H. Wang, M. Xiao, and K. C. Peng, “Interacting dark states with enhanced nonlinearity in an ideal four-level tripod atomic system,” Phys. Rev. A 77, 023824 (2008). [CrossRef]
  20. M. Yan, E. G. Rickey, and Y. Zhu, “Suppression of two-photon absorption by quantum interference,” Phys. Rev. A 64, 043807 (2001). [CrossRef]
  21. C. L. Wang, A. J. Li, X. Y. Zhou, Z. H. Kang, J. Yun, and J. Y. Gao, “Investigation of spontaneously generated coherence in dressed states of R87b atoms,” Opt. Lett. 33, 687–689 (2008). [CrossRef] [PubMed]
  22. A. Joshi and M. Xiao, “Generalized dark-state polaritons for photon memory in multilevel atomic media,” Phys. Rev. A 71, 041801(R) (2005). [CrossRef]
  23. J. M. Wen, S. W. Du, Y. P. Zhang, M. Xiao, and M. H. Rubin, “Nonclassical light generation via a four-level inverted-Y system,” Phys. Rev. A 77, 033816 (2008). [CrossRef]
  24. S. D. Badger, I. G. Hughes, and C. S. Adams, “Hyperfine effects in electromagnetically induced transparency,” J. Phys. B 34, L749–L756 (2001). [CrossRef]
  25. D. A. Smith and I. G. Hughes, “The role of hyperfine pumping in multilevel systems exhibiting saturated absorption,” Am. J. Phys. 72, 631–637 (2004). [CrossRef]
  26. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66, 2593–2596 (1991). [CrossRef] [PubMed]
  27. J. E. Field, K. H. Hahn, and S. E. Harris, “Observation of electromagnetically induced transparency in collisionally broadened lead vapor,” Phys. Rev. Lett. 67, 3062–3065 (1991). [CrossRef] [PubMed]
  28. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666–669 (1995). [CrossRef] [PubMed]
  29. W. J. Munro, K. Nemoto, and T. P. Spiller, “Weak nonlinearities: a new route to optical quantum computation,” New J. Phys. 7, 137-1–137-12 (2005). [CrossRef]
  30. S. Rebić, C. Ottaviani, G. Di Giuseppe, D. Vitali, and P. Tombesi, “Assessment of a quantum phase-gate operation based on nonlinear optics,” Phys. Rev. A 74, 032301 (2006). [CrossRef]
  31. H. Shapiro, “Single-photon Kerr nonlinearities do not help quantum computation,” Phys. Rev. A 73, 062305 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited