OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2040–2050

Topology optimization for transient response of photonic crystal structures

René Matzen, Jakob S. Jensen, and Ole Sigmund  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 2040-2050 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1198 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An optimization scheme based on topology optimization for transient response of photonic crystal structures is developed. The system response is obtained by a finite-element time-domain analysis employing perfectly matched layers as an absorbing boundary condition. As an example a waveguide-side-coupled microcavity is designed. The gradient-based optimization technique is applied to redistribute the material inside the microcavity such that the Q factors of a monopole and a dipole mode are improved by 375% and 285%, respectively, while maintaining strong coupling. This is obtained by maximizing the stored energy inside the microcavity in the decaying regime of the transient response. Manufacturable designs are achieved by filtering techniques capable of controlling minimum length scales of the design features.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.5750) Optical devices : Resonators
(230.7390) Optical devices : Waveguides, planar

ToC Category:
Numerical Approximation and Analysis

Original Manuscript: June 22, 2010
Manuscript Accepted: August 4, 2010
Published: September 16, 2010

René Matzen, Jakob S. Jensen, and Ole Sigmund, "Topology optimization for transient response of photonic crystal structures," J. Opt. Soc. Am. B 27, 2040-2050 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  2. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, 2008).
  4. M. Burger, S. J. Osher, and E. Yablonovitch, “Inverse problem techniques for the design of photonic crystals,” IEICE Trans. Electron. E87C, 258–265 (2004).
  5. J. S. Jensen and O. Sigmund have prepared a manuscript to be called “Topology optimization for nano-photonics—a review”.
  6. J. S. Jensen and O. Sigmund, “Systematic design of photonic crystal structures using topology optimization: Low-loss waveguide bends,” Appl. Phys. Lett. 84, 2022–2024 (2004). [CrossRef]
  7. J. S. Jensen and O. Sigmund, “Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide,” J. Opt. Soc. Am. B 22, 1191–1198 (2005). [CrossRef]
  8. W. R. Frei, D. A. Tortorelli, and H. T. Johnson, “Topology optimization of a photonic crystal waveguide termination to maximize directional emission,” Appl. Phys. Lett. 86, 111114 (2005). [CrossRef]
  9. P. I. Borel, A. Harpoth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, and O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12, 1996–2001 (2004). [CrossRef] [PubMed]
  10. L. H. Frandsen, A. Harpoth, P. I. Borel, M. Kristensen, J. S. Jensen, and O. Sigmund, “Broadband photonic crystal waveguide 60 degrees bend obtained utilizing topology optimization,” Opt. Express 12, 5916–5921 (2004). [CrossRef] [PubMed]
  11. P. I. Borel, L. H. Frandsen, A. Harpoth, M. Kristensen, J. S. Jensen, and O. Sigmund, “Topology optimised broadband photonic crystal Y-splitter,” Electron. Lett. 41, 69–71 (2005). [CrossRef]
  12. J. S. Jensen, O. Sigmund, L. H. Frandsen, P. I. Borel, A. Harpoth, and M. Kristensen, “Topology design and fabrication of an efficient double 90(circle) photonic crystal waveguide bend,” IEEE Photon. Technol. Lett. 17, 1202–1204 (2005). [CrossRef]
  13. T. Nomura, K. Sato, K. Taguchi, T. Kashiwa, and S. Nishiwaki, “Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique,” Int. J. Numer. Methods Eng. 71, 1261–1296 (2007). [CrossRef]
  14. J. Dahl, J. S. Jensen, and O. Sigmund, “Topology optimization for transient wave propagation problems in one dimension design of filters and pulse modulators,” Struct. Multidiscip. Optim. 36, 585–595 (2008). [CrossRef]
  15. L. R. Yang, A. V. Lavrinenko, J. M. Hvam, and O. Sigmund, “Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization,” Appl. Phys. Lett. 95, 261101 (2009). [CrossRef]
  16. J. S. Jensen, “Space-time topology optimization for one-dimensional wave propagation,” Int. J. Numer. Methods Eng. 198, 705–715 (2009).
  17. J. Jin and D. J. Riley, Finite Element Analysis of Antennas and Arrays (Wiley, 2007).
  18. D. Englund, I. Fushman, and J. Vuckovic, “General recipe for designing photonic crystal cavities,” Opt. Express 13, 5961–5975 (2005). [CrossRef] [PubMed]
  19. W. R. Frei, H. T. Johnson, and K. D. Choquette, “Optimization of a single defect photonic crystal laser cavity,” J. Appl. Phys. 103, 033102 (2008). [CrossRef]
  20. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341–1343 (2003). [CrossRef]
  21. C. J. M. Smith, R. M. De la Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdre, and U. Oesterle, “Coupled guide and cavity in a two-dimensional photonic crystal,” Appl. Phys. Lett. 78, 1487–1489 (2001). [CrossRef]
  22. G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, “Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode,” Opt. Express 12, 6624–6631 (2004). [CrossRef] [PubMed]
  23. M. P. Bendsøe and O. Sigmund, Topology Optimization: Theory, Methods, and Applications, 2nd ed. (Springer Verlag, 2004).
  24. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  25. A. F. Oskooi, L. Zhang, Y. Avniel, and S. G. Johnson, “The failure of perfectly matched layers, and towards their redemption by adiabatic absorbers,” Opt. Express 16, 11376–11392 (2008). [CrossRef] [PubMed]
  26. M. Koshiba, Y. Tsuji, and S. Sasaki, “High-performance absorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microw. Wirel. Compon. Lett. 11, 152–154 (2001). [CrossRef]
  27. S. Silver, Microwave Antenna Theory and Design (McGraw-Hill, 1949).
  28. B. Yue and M. N. Guddati, “Dispersion-reducing finite elements for transient acoustics,” J. Acoust. Soc. Am. 118, 2132–2141 (2005). [CrossRef]
  29. D. A. Tortorelli and P. Michaleris, “Design sensitivity analysis: overview and review,” Inverse Probl. Eng. 1, 71–105 (1994). [CrossRef]
  30. Y. S. Chung, C. Cheon, I. H. Park, and S. Y. Hahn, “Optimal shape design of microwave device using FDTD and design sensitivity analysis,” IEEE Trans. Microwave Theory Tech. 48, 2289–2296 (2000). [CrossRef]
  31. D. A. Tortorelli and R. B. Haber, “First-order design sensitivities for transient conduction problems by an adjoint method,” Int. J. Numer. Methods Eng. 28, 733–752 (1989). [CrossRef]
  32. J. D. Jackson, Classical Electrodynamics (Wiley, 1999).
  33. K. Svanberg, “A class of globally convergent optimization methods based on conservative convex separable approximations,” SIAM J. Optim. 12, 555–573 (2002). [CrossRef]
  34. O. Sigmund, “Morphology-based black and white filters for topology optimization,” Struct. Multidiscip. Optim. 33, 401–424 (2007). [CrossRef]
  35. J. K. Guest, “Topology optimization with multiple phase projection,” Comput. Methods Appl. Mech. Eng. 199, 123–135 (2009). [CrossRef]
  36. http://www.esf.org/euryi.
  37. http://www.topopt.dtu.dk.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited