OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2061–2067

Application of the generalized multipole technique to the analysis of a ladder parallel-plate waveguide for terahertz guided-wave applications

Mehdi Ahmadi-Boroujeni and Mahmoud Shahabadi  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 2061-2067 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (279 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a parallel-plate ladder waveguide (PPLWG) is proposed for terahertz waveguiding. A modal analysis of the proposed structure is performed by the use of the generalized multipole technique and is verified using both the mode matching technique and the finite-element method. It is shown that guided modes of this waveguide are TE y m even modes. The dispersion diagram, mode field distribution, and attenuation constant of the dominant mode are also presented. It is shown that by a proper choice of PPLWG dimensions, its mode confinement and dispersion profile can be adapted to typical requirements. Moreover, the field distribution of the dominant mode of a PPLWG can be matched to the TE 1 mode of a parallel-plate waveguide which is of practical importance.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(260.3090) Physical optics : Infrared, far

ToC Category:
Integrated Optics

Original Manuscript: July 7, 2010
Manuscript Accepted: August 20, 2010
Published: September 23, 2010

Mehdi Ahmadi-Boroujeni and Mahmoud Shahabadi, "Application of the generalized multipole technique to the analysis of a ladder parallel-plate waveguide for terahertz guided-wave applications," J. Opt. Soc. Am. B 27, 2061-2067 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Wang and D. Mittleman, “Guided propagation of terahertz pulses on metal wires,” J. Opt. Soc. Am. B 22, 2001–2008 (2005). [CrossRef]
  2. R. W. McGowan, G. Gallot, and D. Grischkowsky, “Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides,” Opt. Lett. 24, 1431–1433 (1999). [CrossRef]
  3. G. Gallot, S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17, 851–863 (2000). [CrossRef]
  4. S. P. Jamison, R. W. McGowan, and D. Grischkowsky, “Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers,” Appl. Phys. Lett. 76, 1987–1989 (2000). [CrossRef]
  5. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguides,” J. Appl. Phys. 88, 4449–4451 (2000). [CrossRef]
  6. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001). [CrossRef]
  7. R. Mendis and D. Grischkowsky, “THz interconnect with low-loss and low-group velocity dispersion,” IEEE Microw. Wirel. Compon. Lett. 11, 444–446 (2001). [CrossRef]
  8. A. Bingham, Y. Zhao, and D. Grischkowsky, “THz parallel plate photonic waveguide,” Appl. Phys. Lett. 87, 051101 (2005). [CrossRef]
  9. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006). [CrossRef]
  10. H. Han, H. Park, M. Cho, and J. Kim, “Terahertz pulse propagation in plastic photonic crystal fiber,” Appl. Phys. Lett. 80, 2634–2636 (2002). [CrossRef]
  11. T.-I. Jeon and D. Grischkowsky, “Direct optoelectronic generation and detection of sub-ps-electrical pulses on sub-mm-coaxial transmission lines,” Appl. Phys. Lett. 85, 6092–6094 (2004). [CrossRef]
  12. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [CrossRef] [PubMed]
  13. T.-I. Jeon, J. Zhang, and D. Grischkowsky, “THz Sommerfeld wave propagation on a single metal wire,” Appl. Phys. Lett. 86, 161904 (2005). [CrossRef]
  14. S. A. Maier, S. R. Andrews, L. M. Moreno, and F. J. Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  15. S. Atakaramians, S. Afshar, B. Fischer, D. Abbott, and T. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845–8854 (2008). [CrossRef] [PubMed]
  16. D. Chen and H. Chen, “A novel low-loss terahertz waveguide: polymer tube,” Opt. Express 18, 3762–3767 (2010). [CrossRef] [PubMed]
  17. R. Mendis and D. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009). [CrossRef] [PubMed]
  18. A. F. Harvey, “Periodic and guiding structures at microwave frequencies,” IRE Trans. Microwave Theory Tech. 8, 30–61 (1960). [CrossRef]
  19. R. F. Harrington, Time-Harmonic Electromagnetic Fields (McGraw-Hill, 1987).
  20. C. Hafner, Generalized Multipole Technique for Computational Electromagnetics (Artech House, 1990).
  21. N. Talebi and M. Shahabadi, “Application of generalized multipole technique to the analysis of discontinuities in substrate integrated waveguides,” PIER 69, 227–235 (2007). [CrossRef]
  22. N. Talebi, A. Mahjoubfar, and M. Shahabadi, “Plasmonic ring resonator,” J. Opt. Soc. Am. B 25, 2116–2122 (2008). [CrossRef]
  23. F. Xu and K. Wu, “Guided-wave and leakage characteristics of substrate integrated waveguide,” IEEE Trans. Microwave Theory Tech. 53, 66–73 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited