OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2068–2077

Geometrical description of the onset of multi-pulsing in mode-locked laser cavities

Feng Li, P. K. A. Wai, and J. Nathan Kutz  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 2068-2077 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (5646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple iterative model is introduced quantifying the interaction of saturable gain and nonlinear loss in a mode-locked laser cavity. The resulting geometrical description of the laser dynamics completely characterizes the generic multi-pulsing instability observed in experiments. The model further shows that the onset of multi-pulsing can be preceded by periodic and chaotic transitions as recently confirmed in theory and experiment. The results suggest ways to engineer the nonlinear losses in the cavity in order to achieve an enhanced performance.

© 2010 Optical Society of America

OCIS Codes
(140.3500) Lasers and laser optics : Lasers, erbium
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 11, 2010
Revised Manuscript: August 10, 2010
Manuscript Accepted: August 12, 2010
Published: September 23, 2010

Feng Li, P. K. A. Wai, and J. Nathan Kutz, "Geometrical description of the onset of multi-pulsing in mode-locked laser cavities," J. Opt. Soc. Am. B 27, 2068-2077 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1173–1185 (2000). [CrossRef]
  2. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48, 629–678 (2006). [CrossRef]
  3. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am B 14, 2099–2111 (1997). [CrossRef]
  4. J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16, 636–650 (2008). [CrossRef] [PubMed]
  5. B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17, 23137–23146 (2009). [CrossRef]
  6. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E 70, 066612 (2004). [CrossRef]
  7. Q. Xing, L. Chai, W. Zhang, and C. Wang, “Regular, period-doubling, quasi-periodic, and chaotic behavior in a self-mode-locked Ti:sapphire laser,” Opt. Commun. 162, 71–74 (1999). [CrossRef]
  8. B. Collings, K. Berman, and W. H. Knox, “Stable multigigahertz pulse train formation in a short cavity passively harmonic modelocked Er/Yb fiber laser,” Opt. Lett. 23, 123–125 (1998). [CrossRef]
  9. M. E. Fermann and J. D. Minelly, “Cladding-pumped passive harmonically mode-locked fiber laser,” Opt. Lett. 21, 970–972 (1996). [CrossRef] [PubMed]
  10. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Energy quantization in figure eight fibre laser,” Electron. Lett. 28, 67–68 (1992). [CrossRef]
  11. M. J. Guy, D. U. Noske, A. Boskovic, and J. R. Taylor, “Femtosecond soliton generation in a praseodymium fluoride fiber laser,” Opt. Lett. 19, 828–830 (1994). [CrossRef] [PubMed]
  12. M. Horowitz, C. R. Menyuk, T. F. Carruthers, and I. N. Duling III, “Theoretical and experimental study of harmonically modelocked fiber lasers for optical communication systems,” J. Lightwave Technol. 18, 1565–1574 (2000). [CrossRef]
  13. R. P. Davey, N. Langford, and A. I. Ferguson, “Interacting solutions in erbium fibre laser,” Electron. Lett. 27, 1257–1259 (1991). [CrossRef]
  14. M. J. Lederer, B. Luther-Davis, H. H. Tan, C. Jagadish, N. N. Akhmediev, and J. M. Soto-Crespo, “Multipulse operation of a Ti:Sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror,” J. Opt. Soc. Am. B 16, 895–904 (1999). [CrossRef]
  15. M. Lai, J. Nicholson, and W. Rudolph, “Multiple pulse operation of a femtosecond Ti:sapphire laser,” Opt. Commun. 142, 45–49 (1997). [CrossRef]
  16. C. Wang, W. Zhang, K. F. Lee, and K. M. Yoo, “Pulse splitting in a self-mode-locking Ti:sapphire laser,” Opt. Commun. 137, 89–92 (1997). [CrossRef]
  17. H. Kitano and S. Kinoshita, “Stable multipulse generation from a self-mode-locked Ti:sapphire laser,” Opt. Commun. 157, 128–134 (1998). [CrossRef]
  18. N. Akhmediev and A. Ankiewicz, Dissipative Solitons, Lecture Notes in Physics (Springer-Verlag, 2005). [CrossRef]
  19. R. Devaney, An Introduction to Chaotic Dynamical Systems, 2nd ed. (Addison-Wesley, 1989).
  20. P. G. Drazin, Nonlinear Systems (Cambridge University Press, 1992).
  21. E. Ding and J. N. Kutz, “Operating regimes, split-step modeling, and the Haus master mode-locking model,” J. Opt. Soc. Am. B 26, 2290–2300 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited