OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2078–2086

Infrared reflectance from a compound grating and its alternative componential gratings

Yu-Bin Chen and Ming-Jin Huang  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 2078-2086 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (898 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This work both numerically and experimentally investigates reflectance spectra from a metallic compound grating and its alternative sets of componential gratings at wavelengths between 2.5 and 25 μ m . The numerical algorithm is based on the rigorous coupled-wave analysis, and the specular reflectance is measured with Fourier-transform infrared spectrometry. The impact dominance of each componential grating on the compound grating reflectance is thoroughly discussed considering the incidence polarization, grating geometry, and rules for profile synthesis. Tailored spectra by individual Wood’s anomaly and their interplay associated with the profile synthesis are also studied.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.4760) Materials : Optical properties
(260.3060) Physical optics : Infrared

ToC Category:
Diffraction and Gratings

Original Manuscript: July 22, 2010
Revised Manuscript: August 12, 2010
Manuscript Accepted: August 13, 2010
Published: September 23, 2010

Yu-Bin Chen and Ming-Jin Huang, "Infrared reflectance from a compound grating and its alternative componential gratings," J. Opt. Soc. Am. B 27, 2078-2086 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W.-C. Tan, J. R. Sambles, and T. W. Preist, “Double-period zero-order metal gratings as effective selective absorbers,” Phys. Rev. B 61, 13177–13182 (2000). [CrossRef]
  2. A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Excitation of remarkably nondispersive surface plasmons on a nondiffracting, dual-pitch metal grating,” Appl. Phys. Lett. 80, 2410–2412 (2002). [CrossRef]
  3. S. I. Grosz, D. C. Skigin, and A. N. Fantino, “Resonant effects in compound diffraction gratings: Influence of the geometrical parameters of the surface,” Phys. Rev. E 65, 056619 (2002). [CrossRef]
  4. M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, “Low angular-dispersion microwave absorption of a dual-pitch nondiffracting metal bigrating,” Appl. Phys. Lett. 83, 806–808 (2003). [CrossRef]
  5. A. P. Hibbins, I. R. Hooper, M. J. Lockyear, and J. R. Sambles, “Microwave transmission of a compound metal grating,” Phys. Rev. Lett. 96, 257402 (2006). [CrossRef] [PubMed]
  6. D. C. Skigin and R. A. Depine, “Resonances on metallic compound transmission gratings with subwavelength wires and slits,” Opt. Commun. 262, 270–275 (2006). [CrossRef]
  7. D. C. Skigin and R. A. Depine, “Diffraction by dual-period gratings,” Appl. Opt. 46, 1385–1391 (2007). [CrossRef] [PubMed]
  8. M. Navarro-Cía, D. C. Skigin, M. Beruete, and M. Sorolla, “Experimental demonstration of phase resonances in metallic compound gratings with subwavelength slits in the millimeter wave regime,” Appl. Phys. Lett. 94, 091107 (2009). [CrossRef]
  9. I. Balin, N. Dahan, V. Kleiner, and E. Hasman, “Bandgap structure of thermally excited surface phonon polaritons,” Appl. Phys. Lett. 96, 071911 (2010). [CrossRef]
  10. B. E. N. Keeler, D. W. Carr, J. P. Sullivan, T. A. Friedmann, and J. R. Wendt, “Experimental demonstration of a laterally deformable optical nanoelectromechanical system grating transducer,” Opt. Lett. 29, 1182–1184 (2004). [CrossRef] [PubMed]
  11. D. Crouse, “Numerical modeling and electromagnetic resonant modes in complex grating structures and optoelectronic device applications,” IEEE Trans. Electron Devices 52, 2365–2373 (2005). [CrossRef]
  12. Y.-B. Chen and Z. M. Zhang, “Design of tungsten complex gratings for thermophotovoltaic radiators,” Opt. Commun. 269, 411–417 (2007). [CrossRef]
  13. Y.-B. Chen and Z. M. Zhang, “Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces,” J. Phys. D: Appl. Phys. 41, 095406 (2008). [CrossRef]
  14. A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4, 1275–1297 (1965). [CrossRef]
  15. A. Sharon, D. Rosenblatt, and A. A. Friesem, “Resonant grating waveguide structures for visible and near-infrared radiation,” J. Opt. Soc. Am. A 14, 2985–2993 (1997). [CrossRef]
  16. C. Kappel, A. Selle, M. A. Bader, and G. Marowsky, “Resonant double-grating waveguide structures as inverted Fabry–Perot interferometers,” J. Opt. Soc. Am. B 21, 1127–1136 (2004). [CrossRef]
  17. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of submicron metallic slits,” J. Heat Transfer 130, 082404 (2008). [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids III (Academic, 1998).
  19. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4, 396–402 (1902).
  20. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981). [CrossRef]
  21. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  22. B. J. Lee, V. P. Khuu, and Z. M. Zhang, “Partially coherent spectral transmittance of dielectric thin films with rough surfaces,” J. Thermophys. Heat Transfer 19, 360–366 (2005). [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  24. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  25. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008). [CrossRef]
  26. S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer 132, 023301 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited