OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2095–2101

Group velocity and energy transport velocity near the band edge of a disordered coupled cavity waveguide: an analytical approach

N. Le Thomas and R. Houdré  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 2095-2101 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (301 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop an analytical approach to theoretically investigate light speed propagation near the band edge of a coupled cavity waveguide in the presence of residual disorder. This approach that is based on a mean field theory allows us to define the domains of validity of the group velocity and the energy transport velocity concepts as well as a guideline to minimize the role of the residual disorder. Inspired by an analogy with the theory of multiple scattering of classical wave, we derive an analytical formula for the energy transport velocity in periodic photonic structures. Whereas the group velocity diverges near the band edge in the presence of any amount of residual disorder, we show that the energy transport velocity mainly follows the ideal group velocity of the unperturbed structure except for very strong disturbances out of the scope of the presented model.

© 2010 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(260.2030) Physical optics : Dispersion
(290.4210) Scattering : Multiple scattering
(230.4555) Optical devices : Coupled resonators
(130.5296) Integrated optics : Photonic crystal waveguides
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Integrated Optics

Original Manuscript: May 27, 2010
Revised Manuscript: August 17, 2010
Manuscript Accepted: August 20, 2010
Published: September 22, 2010

N. Le Thomas and R. Houdré, "Group velocity and energy transport velocity near the band edge of a disordered coupled cavity waveguide: an analytical approach," J. Opt. Soc. Am. B 27, 2095-2101 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. F. Krauss, “Slow light in photonic crystal waveguides,” J. Phys. D 40, 2666–2670 (2007). [CrossRef]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  4. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  5. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  6. D. Bohm, Quantum Theory (Prentice-Hall, 1966).
  7. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  8. C. G. B. Garrett and D. E. McCumber, “Propagation of a Gaussian light pulse through an anomalous dispersion medium,” Phys. Rev. A 1, 305–313 (1970). [CrossRef]
  9. S. Chu and S. Wong, “Linear pulse propagation in an absorbing medium,” Phys. Rev. Lett. 48, 738–741 (1982). [CrossRef]
  10. J. Peatross, S. A. Glasgow, and M. Ware, “Average energy flow of optical pulses in dispersive media,” Phys. Rev. Lett. 84, 2370–2373 (2000). [CrossRef] [PubMed]
  11. M. Notomi, E. Kuramochi, and T. Tanabe, “Large-scale arrays of ultrahigh-Q coupled nanocavities,” Nat. Photonics 2, 741–747 (2008). [CrossRef]
  12. J. Jágerská, N. Le Thomas, V. Zabelin, R. Houdré, W. Bogaerts, P. Dumon, and R. Baets, “Experimental observation of slow mode dispersion in photonic crystal coupled-cavity waveguides,” Opt. Lett. 34, 359–361 (2009). [CrossRef] [PubMed]
  13. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  14. P. Tassin, L. Zhang, Th. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  15. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009). [CrossRef]
  16. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22, 1062–1074 (2005). [CrossRef]
  17. S. Mazoyer, J. P. Hugonin, and P. Lalanne, “Disorder-induced multiple scattering in photonic-crystal waveguides,” Phys. Rev. Lett. 103, 063903 (2009). [CrossRef] [PubMed]
  18. M. Patterson, S. Hughes, S. Combrié, N.-V.-Quynh Tran, A. De Rossi, R. Gabet, and Y. Jaouën, “Disorder-induced coherent scattering in slow-light photonic crystal waveguides,” Phys. Rev. Lett. 102, 253903 (2009). [CrossRef] [PubMed]
  19. N. Le Thomas, V. Zabelin, R. Houdré, M. V. Kotlyar, and T. F. Krauss, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B 78, 125301 (2008). [CrossRef]
  20. S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32, 289–291 (2007). [CrossRef] [PubMed]
  21. N. Le Thomas, H. Zhang, J. Jágerská, V. Zabelin, and R. Houdré, “Light transport regimes in slow light photonic crystal waveguides,” Phys. Rev. B 80, 125332 (2009). [CrossRef]
  22. J. Jágerská, H. Zhang, N. Le Thomas, and R. Houdré, “Radiation loss of photonic crystal coupled-cavity waveguides,” Appl. Phys. Lett. 95, 111105 (2009). [CrossRef]
  23. J.-P. Bouchaud and A. Georges, “Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications,” Phys. Rep. 195, 127–293 (1990). [CrossRef]
  24. E. N. Economou, Green’s Functions in Quantum Physics, 2nd ed. (Springer-Verlag, 1979).
  25. U. Frish, “Wave propagation in random media,” in Probabilistic Methods in Applied Mathematics, A.T.Bharucha-Reid, ed. (Academic, 1968), Vol. 1, pp. 75–198.
  26. B. A. van Tiggelen, A. Lagendijk, M. P. van Albada, and A. Tip, “Speed of light in random media,” Phys. Rev. B 45, 12233–12243 (1992). [CrossRef]
  27. E. Akkermans and G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge U. Press, 2006).
  28. M. C. W. van Rossum and T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]
  29. P. Sheng, Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, 1995).
  30. A. Lagendijk and B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996). [CrossRef]
  31. K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media,” Phys. Rev. Lett. 64, 2647–2650 (1990). [CrossRef] [PubMed]
  32. P. E. Wolf and G. Maret, “Weak localization and coherent backscattering of photons in disordered media,” Phys. Rev. Lett. 55, 2696–2699 (1985). [CrossRef] [PubMed]
  33. Z. Q. Zhang, A. A. Chabanov, S. K. Cheung, C. H. Wong, and A. Z. Genack, “Dynamics of localized waves: Pulsed microwave transmissions in quasi-one-dimensional media,” Phys. Rev. B 79, 144203 (2009). [CrossRef]
  34. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  35. S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991). [CrossRef]
  36. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vols. 1 and 2.
  37. G. Schwiete and A. M. Finkel’stein, “Non linear wave-packet dynamics in a disordered medium,” Phys. Rev. Lett. 104, 103904 (2010). [CrossRef] [PubMed]
  38. O. Richoux, C. Depollier, and J. Hardy, “Propagation of mechanical waves in a one-dimensional nonlinear disordered lattice,” Phys. Rev. E 73, 026611 (2006). [CrossRef]
  39. L. Fontanesi, M. Wouters, and V. Savona, “Superfluid to Bose-glass transition in 1D weakly interacting Bose gas,” Phys. Rev. Lett. 103, 030403 (2009). [CrossRef] [PubMed]
  40. F. K. Kneubühl, in Theories on Distributed Feedback Laser, Vol. 14 of Laser Science and Technology, V.S.Letokhov, C.V.Shank, Y.R.Shen, and H.Walther, eds. (Hardwood Academic, 1993), p. 18.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited