OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2102–2109

Dynamical regimes in a monolithic passively mode-locked quantum dot laser

Andrei G. Vladimirov, Uwe Bandelow, Gerrit Fiol, Dejan Arsenijević, Moritz Kleinert, Dieter Bimberg, Alexander Pimenov, and Dmitrii Rachinskii  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 2102-2109 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002102


View Full Text Article

Enhanced HTML    Acrobat PDF (691 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Operation regimes of a two section monolithic quantum dot (QD) mode-locked laser are studied experimentally with InGaAs lasers and theoretically, using a model that takes into account carrier exchange between QD ground state and two-dimensional reservoir of a QD-in-a-well structure. It is shown analytically and numerically that, when the absorber section is long enough, the laser exhibits bistability between laser off state and different mode-locking regimes. The Q-switching instability leading to slow modulation of the mode-locked pulse peak intensity is completely eliminated in this case. When, on the contrary, the absorber length is rather short, in addition to usual Q-switched mode-locking, pure Q-switching regimes are predicted theoretically and observed experimentally.

© 2010 Optical Society of America

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 20, 2010
Revised Manuscript: August 10, 2010
Manuscript Accepted: August 11, 2010
Published: September 22, 2010

Citation
Andrei G. Vladimirov, Uwe Bandelow, Gerrit Fiol, Dejan Arsenijević, Moritz Kleinert, Dieter Bimberg, Alexander Pimenov, and Dmitrii Rachinskii, "Dynamical regimes in a monolithic passively mode-locked quantum dot laser," J. Opt. Soc. Am. B 27, 2102-2109 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-2102


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. A. Jiang, E. P. Ippen, and H. Yokoyama, “Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission” in Ultrahigh-Speed Optical Transmission Technology (Springer, 2007), pp. 21–51. [CrossRef]
  2. B. Hüttl, R. Kaiser, C. Kindel, S. Fidorra, W. Rehbein, H. Stolpe, G. Sahin, U. Bandelow, M. Radziunas, A. G. Vladimirov, and H. Heidrich, “Monolithic 40 GHz mqw mode-locked lasers on GaInAsP/InP with low pulse widths and controlled Q-switching,” Appl. Phys. Lett. 88, 221104 (2006). [CrossRef]
  3. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1, 395–401 (2007). [CrossRef]
  4. Y. Chu, R. V. Penty, and I. H. White, “Measurement of the linewidth enhancement factor of quantum dot lasers using external light injection,” in Pacific Rim Conference on Lasers and Electro-Optics (2005), pp. 59-60. [CrossRef]
  5. M. Kuntz, G. Fiol, M. Lämmlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85, 843 (2004). [CrossRef]
  6. L. Shi, Y. H. Chen, B. Xu, Z. C. Wang, Y. H. Jiao, and Z. G. Wang, “Status and trends of short pulse generation using mode-locked lasers based on advanced quantum-dot active media,” J. Phys. D: Appl. Phys. 40, R307–R318 (2007). [CrossRef]
  7. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section modelocked quantum-dot laser,” Appl. Phys. Lett. 87, 081107 (2005). [CrossRef]
  8. M. G. Thompson, A. Rae, R. L. Sellin, C. Marinelli, R. Penty, I. H. White, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers,” Appl. Phys. Lett. 88, 133119 (2006). [CrossRef]
  9. V. M. Ustinov, A. E. Zhukov, A. Y. Egorov, and N. A. Maleev, Quantum Dot Lasers (Oxford U. Press, 2003). [CrossRef]
  10. J. Gomis-Bresco, S. Dommers, V. V. Temnov, U. Woggon, J. Martinez-Pastor, M. Laemmlin, and D. Bimberg, “InGaAs quantum dots coupled to a reservoir of nonequilibrium free carriers,” IEEE J. Quantum Electron. 45, 1121–1128 (2009). [CrossRef]
  11. A. Markus, J. X. Chen, O. Gauthier-Lafaye, J.-G. Provost, C. Paranthën, and A. Fiore, “Impact of intraband relaxation on the performance of a quantum-dot laser,” IEEE J. Sel. Top. Quantum Electron. 9, 1308–1314 (2003). [CrossRef]
  12. A. Markus, M. Rossetti, V. Calligari, D. Chek-Al-Kar, J. X. Chen, A. Fiore, and R. Scollo, “Two-state switching and dynamics in quantum dot two-section lasers,” J. Appl. Phys. 100, 113104 (2006). [CrossRef]
  13. D. O’Brien, S. P. Hegarty, G. Huyet, and A. V. Uskov, “Sensitivity of quantum-dot semiconductor lasers to optical feedback,” Opt. Lett. 29, 1–3 (2004). [CrossRef]
  14. E. Viktorov, P. Mandel, A. G. Vladimirov, and U. Bandelow, “A model for mode-locking in quantum dot lasers,” Appl. Phys. Lett. 88, 201102 (2006). [CrossRef]
  15. A. Vladimirov, D. Turaev, and G. Kozyreff, “Delay differential equations for mode-locked semiconductor lasers,” Opt. Lett. 29, 1221–1223 (2004). [CrossRef] [PubMed]
  16. A. Vladimirov and D. Turaev, “Model for passive mode-locking in semiconductor lasers,” Phys. Rev. A 72, 033808 (2005). [CrossRef]
  17. D. Rachinskii, A. Vladimirov, U. Bandelow, B. Hüttl, and R. Kaiser, “Q-switching instability in a mode-locked semiconductor laser,” J. Opt. Soc. Am. B 23, 663–670 (2006). [CrossRef]
  18. U. Bandelow, H. Wenzel, and H. Wünsche, “Influence of inhomogeneous injection on sidemode suppression in strongly coupled DFB semiconductor lasers,” Electron. Lett. 28, 1324–1326 (1992). [CrossRef]
  19. U. Bandelow, M. Radziunas, A. G. Vladimirov, B. Hüttl, and R. Kaiser, “40 GHz modelocked semiconductor lasers: Theory, simulations and experiment,” Opt. Quantum Electron. 38, 495–512 (2006). [CrossRef]
  20. A. G. Vladimirov, A. S. Pimenov, and D. Rachinskii, “Numerical study of dynamical regimes in a monolithic passively mode-locked semiconductor laser,” IEEE J. Quantum Electron. 45, 462–468 (2009). [CrossRef]
  21. A. Vladimirov and D. Turaev, “New model for mode-locking in semiconductor lasers,” Radiophys. Quantum Electron. 47, 769–776 (2004). [CrossRef]
  22. K. Engelborghs, T. Luzyanina, and G. Samaey, DDE-BIFTOOL V. 2.00: A Matlab Package for Bifurcation Analysis of Delay Differential Equations, Tech. Rep. TW-330 (Department of Computer Science, K.U. Leuven, 2001).
  23. N. Guglielmi and E. Hairer, Users’ Guide for the Code RADAR5, version 2.1, Tech. Rep. (Università dell' Aquila, 2005).
  24. T. Erneux, E. A. Viktorov, P. Mandel, T. Piwonski, G. Huyet, and J. Houlihan, “The fast recovery dynamics of a quantum dot semiconductor optical amplifier,” Appl. Phys. Lett. 94, 113501 (2009). [CrossRef]
  25. E. A. Viktorov, T. Erneux, P. Mandel, T. Piwonski, G. Madden, J. Pulka, G. Huyet, and J. Houlihan, “Recovery time scales in a reversed-biased quantum dot absorber,” Appl. Phys. Lett. 94, 263502 (2009). [CrossRef]
  26. E. Viktorov, P. Mandel, M. Kuntz, G. Fiol, D. Bimberg, A. G. Vladimirov, and M. Wolfrum, “Stability of the modelocked regime in quantum dot lasers,” Appl. Phys. Lett. 91, 231116 (2007). [CrossRef]
  27. F. X. Kärtner, J. A. der Au, and U. Keller, “Mode-locking with slow and fast saturable absorbers––what is the difference?” IEEE J. Sel. Top. Quantum Electron. 4, 159–168 (1998). [CrossRef]
  28. G. Fiol, D. Arsenijević, D. Bimberg, A. G. Vladimirov, M. Wolfrum, E. A. Viktorov, and P. Mandel, “Hybrid mode-locking in a 40 GHz monolithic quantum dot laser,” Appl. Phys. Lett. 96, 011104 (2010). [CrossRef]
  29. D. Bimberg, “Quantum dot based nanophotonics and nanoelectronics,” Electron. Lett. 44(3), 168–170 (2008). [CrossRef]
  30. A. R. Kovsh, N. A. Maleev, A. E. Zhukov, S. S. Mikhrin, A. P. Vasil’ev, E. A. Semenova, Y. M. Shernyakov, M. V. Maximov, D. A. Livshits, V. M. Ustinov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain,” J. Cryst. Growth 251, 729–736 (2003). [CrossRef]
  31. M. Kuntz, G. Fiol, M. Laemmlin, C. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95, 1767–1778 (2007). [CrossRef]
  32. G. Fiol, C. Meuer, H. Schmeckebier, D. Arsenijević, S. Liebich, M. Laemmlin, M. Kuntz, and D. Bimberg, “Quantum-dot semiconductor mode-locked lasers and amplifiers at 40 GHz,” IEEE J. Quantum Electron. 45, 1429–1435 (2009). [CrossRef]
  33. H. Schmeckebier, G. Fiol, C. Meuer, D. Arsenijević, and D. Bimberg, “Complete pulse characterization of quantum-dot mode-locked lasers suitable for optical communication up to 160 Gbit/s,” Opt. Express 18, 3415–3425 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited