OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2122–2131

Measurement and modeling of infrared nonlinear absorption coefficients and laser-induced damage thresholds in Ge and GaSb

T. J. Wagner, M. J. Bohn, R. A. Coutu, Jr., L. P. Gonzalez, J. M. Murray, K. L. Schepler, and S. Guha  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 2122-2131 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002122


View Full Text Article

Enhanced HTML    Acrobat PDF (792 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using a simultaneous fitting technique to extract nonlinear absorption coefficients from data at two pulse widths, we measure two-photon and free-carrier absorption coefficients for Ge and GaSb at 2.05 and 2.5 μ m for the first time, to our knowledge. Results agreed well with published theory. Single-shot damage thresholds were also measured at 2.5 μ m and agreed well with modeled thresholds using experimentally determined parameters including nonlinear absorption coefficients and temperature dependent linear absorption. The damage threshold for a single-layer Al 2 O 3 anti-reflective coating on Ge was 55% or 35% lower than the uncoated threshold for picosecond or nanosecond pulses, respectively.

© 2010 U.S. Government

OCIS Codes
(140.3330) Lasers and laser optics : Laser damage
(190.0190) Nonlinear optics : Nonlinear optics
(350.1820) Other areas of optics : Damage

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 20, 2010
Manuscript Accepted: July 28, 2010
Published: September 23, 2010

Citation
T. J. Wagner, M. J. Bohn, R. A. Coutu, Jr., L. P. Gonzalez, J. M. Murray, K. L. Schepler, and S. Guha, "Measurement and modeling of infrared nonlinear absorption coefficients and laser-induced damage thresholds in Ge and GaSb," J. Opt. Soc. Am. B 27, 2122-2131 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-2122


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960). [CrossRef]
  2. S. Mirov, V. Fedorov, I. Moskalev, D. Martyshkin, and C. Kim, “Progress in Cr2+ and Fe2+ doped mid-IR laser materials,” Laser Photonics Rev. 4, 21–41 (2010). [CrossRef]
  3. M. Göppert-Mayer, “über Elementarakte mit zwei Quantensprüngen,” Ph.D. dissertation (University of Göttingen, 1931).
  4. W. Kaiser and C. G. B. Garrett, “Two-photon excitation in CaF2:Eu2+,” Phys. Rev. Lett. 7, 229–231 (1961). [CrossRef]
  5. M. Sheik-Bahae and M. P. Hasselbeck, “Third-order optical nonlinearities,” in OSA Handbook of Optics (McGraw-Hill, 2001), Vol. 4, Chap. 17.
  6. D. N. Christodoulides, I. C. Khoo, G. J. Salamo, G. I. Stegeman, and E. W. Van Stryland, “Nonlinear refraction and absorption: mechanisms and magnitudes,” Adv. Opt. Photon. 2, 60–200 (2010). [CrossRef]
  7. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984). [CrossRef]
  8. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985). [CrossRef] [PubMed]
  9. E. Tuncel, J. L. Staehli, C. Coluzza, G. Margaritondo, J. T. McKinley, R. G. Albridge, A. V. Barnes, A. Ueda, X. Yang, and N. H. Tolk, “Free-electron laser studies of direct and indirect two-photon absorption in germanium,” Phys. Rev. Lett. 70, 4146–4149 (1993). [CrossRef] [PubMed]
  10. S. Krishnamurthy, SRI International, 333 Ravenswood Avenue, Menlo Park, Calif. (personal communication, 2010).
  11. S. Krishnamurthy, Z. G. Yu, S. Guha, and L. Gonzalez, “High irradiance light propagation in InAs,” Appl. Phys. Lett. 89, 161108 (2006). [CrossRef]
  12. B. V. Zubov, L. A. Kulevskii, V. P. Makarov, T. M. Murina, and A. M. Prokhorov, “Two-photon absorption in germanium,” J. Exp. Theor. Phys. 9, 130–132 (1969).
  13. R. G. Wenzel, G. P. Arnold, and N. R. Greiner, “Nonlinear loss in Ge in the 2.5–4-μm range,” Appl. Opt. 12, 2245–2247 (1973). [CrossRef] [PubMed]
  14. A. F. Gibson, C. B. Hatch, P. N. D. Maggs, D. R. Tilley, and A. C. Walker, “Two-photon absorption in indium antimonide and germanium,” J. Phys. C 9, 3259–3275 (1976). [CrossRef]
  15. C. Rauscher and R. Laenen, “Analysis of picoseconds mid-infrared pulses by two-photon absorption in germanium,” J. Appl. Phys. 81, 2818–2821 (1997). [CrossRef]
  16. A. G. Akmanov, B. V. Zhdanov, and B. G. Shakirov, “Two-photon absorption of IR radiation and its optical saturation in n-type gallium antimonide,” Quantum Electron. 26, 882–883 (1996). [CrossRef]
  17. M. D. Turner, W. B. Roh, and K. L. Schepler, “Nonlinear optical properties of GaSb and GaInAsSb and their application for phase conjugation in degenerate four-wave mixing,” J. Opt. Soc. Am. B 17, 790–804 (2000). [CrossRef]
  18. D. A. Reis, K. J. Gaffney, G. H. Gilmer, and B. Torralva, “Ultrafast dynamics of laser-excited solids,” MRS Bull. 31, 601–606 (2006). [CrossRef]
  19. G. E. Jellison, Jr., D. H. Lowndes, D. N. Mashburn, and R. F. Wood, “Time-resolved reflectivity measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,” Phys. Rev. B 34, 2407–2415 (1986). [CrossRef]
  20. D. Seo, L. C. Feldman, N. H. Tolk, and P. I. Cohen, “Interaction of high-power infrared radiation with germanium,” Proc. SPIE 7132, 713216 (2008). [CrossRef]
  21. J. B. McKay, “Power scaling feasibility of chromium-doped II-VI laser sources and the demonstration of a chromium-doped zinc selenide disk Laser,” Ph.D. dissertation (Air Force Institute of Technology, 2002).
  22. T. J. Carrig, G. J. Wagner, W. J. Alford, and A. Zakel, “Chromium-doped chalcogenide lasers,” Proc. SPIE 5460, 74–82 (2004). [CrossRef]
  23. T. R. Harris, “Optical properties of Si, Ge, GaAs, GaSb, InAs, and InP at elevated temperatures,” Master’s thesis (Air Force Institute of Technology, 2010).
  24. R. N. Hall, “Electron-hole recombination in germanium,” Phys. Rev. 87, 387 (1952). [CrossRef]
  25. E. Marin, I. Riech, P. Diaz, J. J. Alvarado-Gil, R. Baquero, J. G. Mendoza-Alvarez, H. Vargas, A. Cruz-Orea, and M. Vargas, “Photoacoustic determination of non-radiative carrier lifetimes,” J. Appl. Phys. 83, 2604–2609 (1998). [CrossRef]
  26. M. Levinstein, S. Rumyantsev, and M. Shur, Handbook Series on Semiconductor Parameters (World Scientific, 1996, 1999); available online at http://www.ioffe.ru/SVA/NSM/Semicond. [CrossRef]
  27. M. D. Dramićanin, P. M. Nikoli, Z. D. Ristovski, D. G. Vasiljevi, and D. M. Todorovi, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal,” Phys. Rev. B 51, 14226–14232 (1995). [CrossRef]
  28. P. S. Dutta, H. L. Bhat, and V. Kumar, “The physics and technology of gallium antimonide: An emerging optoelectronic material,” J. Appl. Phys. 81, 5821–5870 (1997). [CrossRef]
  29. R. A. Dragoset, C. W. Clark, W. C. Martin, P. J. Mohr, and B. N. Taylor, Periodic Table: Atomic Properties of the Elements (National Institute of Standards and Technology, 1999).
  30. J. C. Phillips and J. A. Van Vechten, “Dielectric classification of crystal structures, ionization potentials, and band structures,” Phys. Rev. Lett. 22, 705–708 (1969). [CrossRef]
  31. R. M. Wood, Laser-induced Damage of Optical Materials (Taylor & Francis, 2003), pp. 31–32. [CrossRef]
  32. S. J. Sheldon, L. V. Knight, and J. M. Thorne, “Laser-induced thermal lens effect: a new theoretical model,” Appl. Opt. 21, 1663–1669 (1982). [CrossRef] [PubMed]
  33. L. P. Gonzalez, J. M. Murray, V. M. Cowan, and S. Guha, “Measurement of the nonlinear optical properties of semiconductors using the irradiance scan technique,” Proc. SPIE 6875, 68750R (2008). [CrossRef]
  34. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294–316 (1985). [CrossRef]
  35. O. A. Louchev, Y. Urata, and S. Wada, “Numerical simulation and optimization of giant pulse generation in 2 microns Tm,Ho lasers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CThDD2. [PubMed]
  36. O. A. Louchev, Y. Urata, N. Saito, and S. Wada, “Computational model for operation of 2 μm co-doped Tm,Ho solid-state lasers,” Opt. Express 15, 11903–11912 (2007). [CrossRef] [PubMed]
  37. L. P. Gonzalez, J. M. Murray, S. Krishnamurthy, and S. Guha, “Wavelength dependence of two photon and free carrier absorptions in InP,” Opt. Express 17, 8741–8748 (2009). [CrossRef] [PubMed]
  38. T. J. Sloanes, “Measurement and application of optical nonlinearities in indium phosphide, cadmium mercury telleride and photonic crystal fibres,” Ph.D. dissertation (University of St. Andrews, 2009).
  39. International Organization for Standardization (IOS), Lasers and Laser-Related Equipment—Determination of Laser-Induced Damage Threshold of Optical Surfaces—Part 1: 1-on-1 Test (IOS, 2000). [PubMed]
  40. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Laser-induced damage in dielectrics with nanosecond to subpicosecond pulses,” Phys. Rev. Lett. 74, 2248–2251 (1995). [CrossRef] [PubMed]
  41. L. V. Keldysh, “Ionization in the field of a strong electromagnetic wave,” Sov. Phys. JETP 20, 1307–1314 (1965).
  42. A. P. Joglekar, H. Liu, G. J. Spooner, E. Meyhöfer, G. Mourou, and A. J. Hunt, “A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining,” Appl. Phys. B 77, 25–30 (2003). [CrossRef]
  43. A. Othonos, H. M. Van Driel, J. F. Young, and P. J. Kelly, “Correlation of hot-phonon and hot-carrier kinetics in Ge on a picosecond time scale,” Phys. Rev. B 43, 6682–6690 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited