OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2132–2140

Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route toward invisible sensors

Giuseppe Castaldi, Ilaria Gallina, Vincenzo Galdi, Andrea Alù, and Nader Engheta  »View Author Affiliations


JOSA B, Vol. 27, Issue 10, pp. 2132-2140 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002132


View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The suggestive idea of “cloaking” an electromagnetic sensor, i.e., strongly reducing its visibility (scattering) while maintaining its field-sensing (absorption) capabilities, has recently been proposed in the literature, based on scattering-cancellation, Fano-resonance, or transformation-optics approaches. In this paper, we explore an alternative transformation-optics-based route, which relies on the recently introduced concept of “anti-cloaking.” More specifically, our proposed approach relies on a suitable tailoring of the competing cloaking and anti-cloaking mechanisms, interacting in a two-dimensional cylindrical scenario. Via analytical and parametric studies, we illustrate the underlying phenomenology, identify the critical design parameters, and address the relevant optimality and trade-off issues, taking also into account the effect of material losses. Our results confirm the envisaged potentials of the proposed transformation-optics approach as an attractive alternative route to sensor cloaking.

© 2010 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(230.0230) Optical devices : Optical devices
(260.2110) Physical optics : Electromagnetic optics
(260.2710) Physical optics : Inhomogeneous optical media
(230.3205) Optical devices : Invisibility cloaks

ToC Category:
Optical Devices

History
Original Manuscript: July 15, 2010
Revised Manuscript: August 23, 2010
Manuscript Accepted: August 23, 2010
Published: September 24, 2010

Citation
Giuseppe Castaldi, Ilaria Gallina, Vincenzo Galdi, Andrea Alù, and Nader Engheta, "Power scattering and absorption mediated by cloak/anti-cloak interactions: a transformation-optics route toward invisible sensors," J. Opt. Soc. Am. B 27, 2132-2140 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-10-2132


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Alù and N. Engheta, “Achieving transparency with plasmonic and metamaterial coatings,” Phys. Rev. E 72, 016623 (2005). [CrossRef]
  2. M. G. Silveirinha, A. Alù, and N. Engheta, “Cloaking mechanism with antiphase plasmonic satellites,” Phys. Rev. B 78, 205109 (2008). [CrossRef]
  3. G. W. Milton and N. A. P. Nicorovici, “On the cloaking effects associated with anomalous localized resonance,” Proc. R. Soc. London, Ser. A 462, 3027–3059 (2006). [CrossRef]
  4. U. Leonhardt, “Optical conformal mapping,” Science 312, 1777–1780 (2006). [CrossRef] [PubMed]
  5. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312, 1780–1782 (2006). [CrossRef] [PubMed]
  6. A. Håkansson, “Cloaking of objects from electromagnetic fields by inverse design of scattering optical elements,” Opt. Express 15, 4328–4334 (2007). [CrossRef] [PubMed]
  7. P. Alitalo, O. Luukkonen, L. Jylha, J. Venermo, and S. A. Tretyakov, “Transmission-line networks cloaking objects from electromagnetic fields,” IEEE Trans. Antennas Propag. 56, 416–424 (2008). [CrossRef]
  8. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: Application to optical cloaking,” Phys. Rev. Lett. 102, 213901 (2009). [CrossRef] [PubMed]
  9. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314, 977–980 (2006). [CrossRef] [PubMed]
  10. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Two-dimensional metamaterial structure exhibiting reduced visibility at 500 nm,” Opt. Lett. 33, 1342–1344 (2008). [CrossRef] [PubMed]
  11. S. Tretyakov, P. Alitalo, O. Luukkonen, and C. Simovski, “Broadband electromagnetic cloaking of long cylindrical objects,” Phys. Rev. Lett. 103, 103905 (2009). [CrossRef] [PubMed]
  12. B. Edwards, A. Alù, M. G. Silveirinha, and N. Engheta, “Experimental verification of plasmonic cloaking at microwave frequencies,” Phys. Rev. Lett. 103, 153901 (2009). [CrossRef] [PubMed]
  13. V. M. Shalaev, “Transforming light,” Science 322, 384–386 (2008). [CrossRef] [PubMed]
  14. U. Leonhardt and T. G. Philbin, “Transformation optics and the geometry of light,” Prog. Opt. 53, 69–152 (2009). [CrossRef]
  15. J. Li and J. B. Pendry, “Hiding under the carpet: A new strategy for cloaking,” Phys. Rev. Lett. 101, 203901 (2008). [CrossRef] [PubMed]
  16. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323, 366–369 (2009). [CrossRef] [PubMed]
  17. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloak operating at optical frequencies,” Nat. Photonics 3, 461–463 (2009). [CrossRef]
  18. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nature Mater. 8, 568–571 (2009). [CrossRef]
  19. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  20. H. F. Ma and T. J. Cui, “Three-dimensional broadband ground-plane cloak made of metamaterials,” Nature Commun. 1, 1–6 (2010). [CrossRef]
  21. H. Ma, S. Qu, Z. Xu, and J. Wang, “The open cloak,” Appl. Phys. Lett. 94, 103501 (2009). [CrossRef]
  22. Y. Lai, H. Chen, Z.-Q. Zhang, and C. T. Chan, “Complementary media invisibility cloak that cloaks objects at a distance outside the cloaking shell,” Phys. Rev. Lett. 102, 093901 (2009). [CrossRef] [PubMed]
  23. H. Chen, X. Luo, H. Ma, and C. T. Chan, “The anti-cloak,” Opt. Express 16, 14603–14608 (2008). [CrossRef] [PubMed]
  24. G. Castaldi, I. Gallina, V. Galdi, A. Alù, and N. Engheta, “Cloak/anti-cloak interactions,” Opt. Express 17, 3101–3114 (2009). [CrossRef] [PubMed]
  25. T. Yang, H. Chen, X. Luo, and H. Ma, “Superscatterer: Enhancement of scattering with complementary media,” Opt. Express 16, 18545–18550 (2008). [CrossRef] [PubMed]
  26. J. Ng, H. Chen, and C. T. Chan, “Metamaterial frequency-selective superabsorber,” Opt. Lett. 34, 644–646 (2009). [CrossRef] [PubMed]
  27. H. Chen, C. T. Chan, S. Liu, and Z. Lin, “A simple route to a tunable electromagnetic gateway,” New J. Phys. 11, 083012 (2009). [CrossRef]
  28. Y. Lai, J. Ng, H. Chen, D. Han, J. Xiao, Z.-Q. Zhang, and C. T. Chan, “Illusion optics: The optical transformation of an object into another object,” Phys. Rev. Lett. 102, 253902 (2009). [CrossRef] [PubMed]
  29. Z. Ruan, M. Yan, C. W. Neff, and M. Qiu, “Ideal cylindrical cloak: Perfect but sensitive to tiny perturbations,” Phys. Rev. Lett. 99, 113903 (2007). [CrossRef] [PubMed]
  30. B. Zhang, H. S. Chen, B. I. Wu, Y. Luo, L. X. Ran, and J. A. Kong, “Response of a cylindrical invisibility cloak to electromagnetic waves,” Phys. Rev. B 76, 121101 (2007). [CrossRef]
  31. B. Zhang, H. Chen, B. I. Wu, and J. A. Kong, “Extraordinary surface voltage effect in the invisibility cloak with an active device inside,” Phys. Rev. Lett. 100, 063904 (2008). [CrossRef] [PubMed]
  32. A. Alù and N. Engheta, “Cloaking a sensor,” Phys. Rev. Lett. 102, 233901 (2009). [CrossRef] [PubMed]
  33. Z. Ruan and S. Fan, “Temporal coupled-mode theory for Fano resonance in light scattering by a single obstacle,” J. Phys. Chem. C 114, 7324–7329 (2010). [CrossRef]
  34. A. Greenleaf, Y. Kurylev, M. Lassas, and G. Uhlmann, “Cloaking vs. shielding in transformation optics,” arXiv:0912.1872.
  35. H. S. Chen, B. I. Wu, B. Zhang, and J. A. Kong, “Electromagnetic wave interactions with a metamaterial cloak,” Phys. Rev. Lett. 99, 063903 (2007). [CrossRef] [PubMed]
  36. Y. Luo, H. Chen, J. Zhang, L. Ran, and J. A. Kong, “Design and analytical full-wave validation of the invisibility cloaks, concentrators, and field rotators created with a general class of transformations,” Phys. Rev. B 77, 125127 (2008). [CrossRef]
  37. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th printing (Dover, 1970).
  38. Y. Luo, J. Zhang, H. Chen, S. Xi, and B.-I. Wu, “Cylindrical cloak with axial permittivity/permeability spatially invariant,” Appl. Phys. Lett. 93, 033504 (2008). [CrossRef]
  39. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. Pendry, “Full-wave simulations of electromagnetic cloaking structures,” Phys. Rev. E 74, 036621 (2006). [CrossRef]
  40. W. Cai, U. K. Chettiar, A. V. Kildishev, V. M. Shalaev, andG. W. Milton, “Nonmagnetic cloak with minimized scattering,” Appl. Phys. Lett. 91, 111105 (2007). [CrossRef]
  41. I. Gallina, G. Castaldi, and V. Galdi, “A higher-order optical transformation for nonmagnetic cloaking,” Microwave Opt. Technol. Lett. 50, 3186–3190 (2008). [CrossRef]
  42. L. Zhang, M. Yan, and M. Qiu, “The effect of transformation order on the invisibility performance of a practical cylindrical cloak,” J. Opt. A, Pure Appl. Opt. 10, 095001 (2008). [CrossRef]
  43. G. Castaldi, I. Gallina, and V. Galdi, “Nearly perfect nonmagnetic invisibility cloaking: Analytic solutions and parametric studies,” Phys. Rev. B 80, 125116 (2009). [CrossRef]
  44. I. Gallina, G. Castaldi, V. Galdi, A. Alù, and N. Engheta, “General class of metamaterial transformation slabs,” Phys. Rev. B 81, 125124 (2010). [CrossRef]
  45. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, “Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations,” Photonics Nanostruct. Fundam. Appl. 6, 87–95 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited