OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 10 — Oct. 1, 2010
  • pp: 2141–2145

Adjusting gap plasmon transmission and intensity in metal-insulator-metal waveguide

Xu-Feng Li, Shi Pan, Ying-Nan Guo, Qiao Wang, and Yi Zhang  »View Author Affiliations

JOSA B, Vol. 27, Issue 10, pp. 2141-2145 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (580 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A device capable of adjusting gap plasmon (GP) transmission and intensity is proposed. The structure consists of two metallic films: one is etched with a nanoslit, and the other below is movable. Between them is a horizontal air channel. Numerical simulations show that the GP sources can produce alternatively in ports A and B when the film below is moved together with a groove in the center; thus, a sawtooth-like waveform is observed, which is different from the sine-like case without a groove and can be explained well by Fourier series. In addition, with the optimized length of film below, the source intensity can be further enhanced for Fabry–Perot resonance producing in both channels A and B.

© 2010 Optical Society of America

OCIS Codes
(230.3990) Optical devices : Micro-optical devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

Original Manuscript: May 21, 2010
Revised Manuscript: August 10, 2010
Manuscript Accepted: August 13, 2010
Published: September 29, 2010

Xu-Feng Li, Shi Pan, Ying-Nan Guo, Qiao Wang, and Yi Zhang, "Adjusting gap plasmon transmission and intensity in metal-insulator-metal waveguide," J. Opt. Soc. Am. B 27, 2141-2145 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Woff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001). [CrossRef]
  3. H. T. Miyazaki and Y. Kurokawa, “Squeezing visible light wave into a 3-nm-thick and 55-nm-long plasmon cavity,” Phys. Rev. Lett. 96, 097401 (2006). [CrossRef] [PubMed]
  4. Y. Xie, A. R. Zakharian, J. V. Moloney, and M. Mansuripur, “Transmission of light through slit apertures in metallic films,” Opt. Express 12, 6106–6121 (2004). [CrossRef] [PubMed]
  5. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  6. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  7. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  8. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopattering using NSOM probe integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16, 2584–2589 (2008). [CrossRef] [PubMed]
  9. X. G. Luo and T. Ishihara, “Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. 84, 4780–4782 (2004). [CrossRef]
  10. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005). [CrossRef] [PubMed]
  11. R. X. Yang, M. A. G. Abushagur, and Z. L. Lu, “Efficiently squeezing near infrared light into a 21 nm-by-24 nm nanospot,” Opt. Express 16, 20142–20148 (2008). [CrossRef] [PubMed]
  12. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filter with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef] [PubMed]
  13. Q. Zhang, X. G. Huang, X. S. Lin, J. Tao, and X. P. Jin, “A subwavelength coupler-type optical filter,” Opt. Express 17, 7549–7555 (2009). [CrossRef]
  14. X. S. Lin and X. G. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009). [CrossRef]
  15. J. Tao, X. G. Huang, X. S. Lin, J. Chen, and Q. Zhang, “Systematical research on characteristics of double-sided teeth-shaped nanoplasmonic waveguide filters,” J. Opt. Soc. Am. B 27, 323–327 (2010). [CrossRef]
  16. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87, 131102 (2005). [CrossRef]
  17. Y. K. Wang, X. R. Zhang, H. J. Tang, Y. X. Wang, Y. L. Song, T. H. Wei, and C. H. Wang, “A tunable unidirectional surface plasmon polaritons sources,” Opt. Express 17, 20457–20464 (2009). [CrossRef] [PubMed]
  18. J. L. Liu, G. Y. Fang, H. F. Zhao, Y. Zhan, and S. T. Liu, “Plasmon flow control at gap waveguide junctions using square ring resonators,” J. Phys. D: Appl. Phys. 43, 055103 (2010). [CrossRef]
  19. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9, 327–331 (2009). [CrossRef]
  20. X. Zhai, J. Q. Liu, M. D. He, L. L. Wang, S. C. Wen, and D. Y. Fan, “Adjust phase resonance in a compound metallic grating with perpendicular cuts,” Opt. Express 18, 6871–6876 (2010). [CrossRef] [PubMed]
  21. A. E. Cetin, K. Guven, and O. E. Mustecaplioglu, “Active control of focal length and beam deflection in a metallic nano-slits array lens with multiple sources,” Opt. Lett. 35, 1980–1982. [PubMed]
  22. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13, 1933–1938 (2005). [CrossRef] [PubMed]
  23. A. Taflove, “Computational eletrodynamics: the finite-difference time-domain method,” http://www.slac.stanford.edu/.
  24. Z. B. Li, Y. H. Yang, X. T. Kong, W. Y. Zhou, and J. G. Tian, “Fabry–Perot resonance in slit and grooves to enhance the transmission through a single subwavelength slit,” J. Opt. A, Pure Appl. Opt. 11, 105002 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited