OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2165–2173

Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites

Yu Gu and Konstantin G. Kornev  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2165-2173 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (687 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



While applications of plasmonics are rapidly growing, magneto-optical effects in nanocomposites are poorly understood. We therefore devote this paper to the theoretical analysis of magneto-optical effects in nanocomposites. Based on the Drude model, we derived the constitutive equation where the dielectric and coupling functions describe the interactions of metal nanoparticles with magnetic field. In the limitation of low volume fraction of metal nanoparticles (i.e., when the material is still transparent), these functions were calculated within the Maxwell–Rayleigh theory of dilute suspensions. We showed that in the absence of external magnetic fields, a non-magnetic nanoparticle can be magnetized in the circularly polarized light beam, and the magnetization depends on the direction of rotation of the light wave. The external magnetic field alters the particle magnetization, and when the fields are weak, this change in magnetization linearly depends on the particular field. The proposed theory was applied to an analysis of the Faraday effect in nanocomposites. We predicted a resonance behavior of the Verdet function in nanocomposites and its dependence on concentration, sample thickness, and external magnetic field.

© 2010 Optical Society of America

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(230.3810) Optical devices : Magneto-optic systems
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: June 17, 2010
Manuscript Accepted: August 15, 2010
Published: October 5, 2010

Yu Gu and Konstantin G. Kornev, "Plasmon enhanced direct and inverse Faraday effects in non-magnetic nanocomposites," J. Opt. Soc. Am. B 27, 2165-2173 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874–881 (1957). [CrossRef]
  2. P. M. Platzman and P. A. Wolff, Waves and Interactions in Solid State Plasmas (Academic, 1973).
  3. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  4. P. Mulvaney, “Surface plasmon spectroscopy of nanosized metal particles,” Langmuir 12, 788–800 (1996). [CrossRef]
  5. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101–011110 (2005). [CrossRef]
  6. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003). [CrossRef]
  7. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  8. P. Drude, “Zur Elektronentheorie der metalle,” Ann. Phys. (Leipzig) 306, 566–613 (1900). [CrossRef]
  9. P. Drude, “Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte,” Ann. Phys. (Leipzig) 308, 369–402 (1900). [CrossRef]
  10. M. Abe, “Derivation of nondiagonal effective dielectric permeability tensors for magnetized granular composites,” Phys. Rev. B 53, 7065–7075 (1996). [CrossRef]
  11. A. A. Zharov, and V. V. Kurin, “Giant resonant magneto-optic Kerr effect in nanostructured ferromagnetic metamaterials,” J. Appl. Phys. 102, 123514 (2007). [CrossRef]
  12. J. B. Gonzalez-Diaz, A. Garcia-Martin, J. M. Garcia-Martin, A. Cebollada, G. Armelles, B. Sepulveda, Y. Alaverdyan, and M. Kall, “Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity,” Small 4, 202–205 (2008). [CrossRef] [PubMed]
  13. M. Faraday, “On the magnetization of light, and the illumination of magnetic lines of force,” Philos. Trans. R. Soc. London 1, 104–123 (1846).
  14. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4, 107–111 (2010). [CrossRef]
  15. V. I. Belotelov, L. L. Doskolovich, and A. K. Zvezdin, “Extraordinary magneto-optical effects and transmission through metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 077401 (2007). [CrossRef] [PubMed]
  16. C. Clavero, K. Yang, J. R. Skuza, and R. A. Lukaszew, “Magnetic-field modulation of surface plasmon polaritons on gratings,” Opt. Lett. 35, 1557–1559 (2010). [CrossRef] [PubMed]
  17. K. Yang, C. Clavero, J. R. Skuza, M. Varela, and R. A. Lukaszew, “Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films,” J. Appl. Phys. 107, 103924–103925 (2010). [CrossRef]
  18. P. K. Jain, Y. H. Xiao, R. Walsworth, and A. E. Cohen, “Surface plasmon resonance enhanced magneto-optics (SuPREMO): Faraday rotation enhancement in gold-coated iron oxide nanocrystals,” Nano Lett. 9, 1644–1650 (2009). [CrossRef] [PubMed]
  19. H. Feil and C. Haas, “Magnetooptical Kerr effect, enhanced by the plasma resonance of charge-carriers,” Phys. Rev. Lett. 58, 65–68 (1987). [CrossRef] [PubMed]
  20. P. M. Hui and D. Stroud, “Theory of Faraday-rotation by dilute suspensions of small particles,” Appl. Phys. Lett. 50, 950–952 (1987). [CrossRef]
  21. L. D. Landau and E. M. Lifshitz, Quantum Mechanics Non-Relativistic Theory (Butterworth-Heinemann, 1981).
  22. L. D. Landau and E. M. Lifshitz, Electrodynamics Of Continuous Media (Pergamon, 1960).
  23. L. P. Pitaevskii, “Electric forces in a transparent dispersive medium,” Sov. Phys. JETP 12, 1008–1013 (1961).
  24. Y. R. Shen, and N. Bloember, “Interaction between light waves and spin waves,” Phys. Rev. 143, 372–384 (1966). [CrossRef]
  25. P. S. Pershan, J. P. van der Ziel, and L. D. Malmstro, “Theoretical discussion of inverse Faraday effect Raman scattering and related phenomena,” Phys. Rev. 143, 574–583 (1966). [CrossRef]
  26. J. W. Strutt (Lord Rayleigh), “On the scattering of light by small particles,” Philos. Mag. 41, 447–454 (1871).
  27. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  28. J. C. Maxwell Garnett, “Colours in metal glasses and metal films,” Philos. Trans. R. Soc. London, Ser. A A203, 385–420 (1904).
  29. C. B. Pedroso, E. Munin, A. B. Villaverde, J. A. M. Neto, N. Aranha, and L. C. Barbosa, “High Verdet constant Ga: S: La: O chalcogenide glasses for magneto-optical devices,” Opt. Eng. (Bellingham) 38, 214–219 (1999). [CrossRef]
  30. A. L. Greer and N. Mathur, “Materials science—Changing face of the chameleon,” Nature 437, 1246–1247 (2005). [CrossRef] [PubMed]
  31. N. Carlie, L. Petit, and K. Richardson, “Engineering of glasses for advanced optical fiber applications,” J. Engineered Fibers Fabrics 4, 21–29 (2009).
  32. A. K. Zvezdin and V. A. Kotov, Modern Magneto-Optics and Magneto-Optical Materials (IOP, 1997). [CrossRef]
  33. J. Ballato and E. Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Appl. Opt. 34, 6848–6854 (1995). [CrossRef] [PubMed]
  34. A. F. Abouraddy, M. Bayindir, G. Benoit, S. D. Hart, K. Kuriki, N. Orf, O. Shapira, F. Sorin, B. Temelkuran, and Y. Fink, “Towards multimaterial multifunctional fibres that see, hear, sense and communicate,” Nature Mater. 6, 336–347 (2007). [CrossRef]
  35. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431, 826–829 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited