OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2180–2189

Cascaded higher-order soliton for non-adiabatic pulse compression

Qian Li, J. Nathan Kutz, and P. K. A. Wai  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2180-2189 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Non-adiabatic pulse compression of cascaded higher-order optical soliton is investigated. We demonstrate high degree compression of pulses with soliton orders N = 2 , 3, 4, and 5 in two or three nonlinear fibers with different second-order dispersion coefficients. Each fiber length is shorter than half of its soliton period. This compression technique has significant advantages over the widely reported adiabatic and higher-order soliton compression.

© 2010 Optical Society of America

OCIS Codes
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Ultrafast Optics

Original Manuscript: June 7, 2010
Revised Manuscript: August 12, 2010
Manuscript Accepted: August 13, 2010
Published: October 8, 2010

Qian Li, J. Nathan Kutz, and P. K. A. Wai, "Cascaded higher-order soliton for non-adiabatic pulse compression," J. Opt. Soc. Am. B 27, 2180-2189 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, 1998).
  2. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001).
  3. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1, 139–149 (1984). [CrossRef]
  4. K. C. Chan and H. F. Liu, “Short pulse generation by higher order soliton-effect compression: Effects of optical fiber characteristics,” IEEE J. Quantum Electron. 31, 2226–2235 (1995). [CrossRef]
  5. M. D. Pelusi and H. F. Liu, “Higher order soliton pulse compression in dispersion-decreasing optical fibers,” IEEE J. Quantum Electron. 33, 1430–1439 (1997). [CrossRef]
  6. R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett. 7, 512–514 (1982). [CrossRef] [PubMed]
  7. J. L. Tapié and G. Mourou, “Shaping of clean, femtosecond pulses at 1.053 μm for chirped pulse amplification,” Opt. Lett. 17, 136–138 (1992). [CrossRef] [PubMed]
  8. N. J. Doran and D. Wood, “Nonlinear-optical loop mirror,” Opt. Lett. 13, 56–58 (1988). [CrossRef] [PubMed]
  9. B. J. Eggleton, G. Lenz, and N. M. Litchinitser, “Optical pulse compression schemes that use nonlinear Bragg gratings,” Fiber Integr. Opt. 19, 383–421 (2000). [CrossRef]
  10. S. V. Chernikov, E. M. Dianov, D. J. Richardson, and D. N. Payne, “Soliton pulse compression in dispersion decreasing fiber,” Opt. Lett. 18, 476–478 (1993). [CrossRef] [PubMed]
  11. M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “200 fs soliton pulse generation at 10 GHz through nonlinear compression of transform-limited pulses from an electroabsorption modulator,” Electron. Lett. 31, 740–741 (1995). [CrossRef]
  12. M. Nakazawa, E. Yoshida, H. Kubota, and Y. Kimura, “Generation of a 170 fs, 10 GHz transform-limited pulse train at 1.55 μm using a dispersion decreasing, erbium-doped active soliton compressor,” Electron. Lett. 30, 2038–2040 (1994). [CrossRef]
  13. B. J. Eggleton, R. E. Slusher, C. M. de Sterke, P. A. Krug, and J. E. Sipe, “Bragg grating solitons,” Phys. Rev. Lett. 76, 1627–1630 (1996). [CrossRef] [PubMed]
  14. G. Lenz and B. J. Eggleton, “Adiabatic Bragg soliton compression in nonuniform grating structures,” J. Opt. Soc. Am. B 15, 2979–2985 (1998). [CrossRef]
  15. Q. Li, K. Senthilnathan, K. Nakkeeran, and P. K. A. Wai, “Nearly chirp-and pedestal-free pulse compression in nonlinear fiber Bragg gratings,” J. Opt. Soc. Am. B 26, 432–443 (2009). [CrossRef]
  16. Q. Li, P. K. A. Wai, K. Senthilnathan, and K. Nakkeeran, “Modeling self-similar optical pulse compression in nonlinear fiber Bragg gratings using the coupled mode equations” (submitted to J. Lightwave Technol.).
  17. K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped higher order solitons” (submitted to J. Mod. Opt.).
  18. K. Senthilnathan, K. Nakkeeran, Q. Li, and P. K. A. Wai, “Chirped optical solitons: High degree pulse compression,” in Proceedings of OptoElectronics and Communications Conference (2009), paper FG2. [CrossRef]
  19. M. V. Tognetti and H. M. Crespo, “Sub-two-cycle soliton-effect pulse compression at 800 nm in photonic crystal fibers,” J. Opt. Soc. Am. B 24, 1410–1415 (2007). [CrossRef]
  20. A. A. Voronin and A. M. Zheltikov, “Soliton-number analysis of soliton-effect pulse compression to single-cycle pulse widths,” Phys. Rev. A 78, 063834 (2008). [CrossRef]
  21. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008). [CrossRef] [PubMed]
  22. M. Foster, A. Gaeta, Q. Cao, and R. Trebino, “Soliton-effect compression of supercontinuum to few-cycle durations in photonic nanowires,” Opt. Express 13, 6848–6855 (2005). [CrossRef] [PubMed]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  24. P. V. Mamyshev, “Generation and compression of femtosecond solitons in optical fibers,” in Optical Solitons—Theory and Experiment, J.R.Taylor, ed. (Cambridge University Press, 1992). [CrossRef]
  25. W.-h. Cao and P. K. A. Wai, “Picosecond soliton transmission by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors,” Appl. Opt. 44, 7611–7620 (2005). [CrossRef] [PubMed]
  26. K. Smith, N. J. Doran, and P. G. J. Wigley, “Pulse shaping, compression, and pedestal suppression employing a nonlinear-optical loop mirror,” Opt. Lett. 15, 1294–1296 (1990). [CrossRef] [PubMed]
  27. K. Saitoh and M. Koshiba, “Numerical modeling of photonic crystal fibers,” J. Lightwave Technol. 23, 3580–3590 (2005). [CrossRef]
  28. S. P. Survaiya and R. K. Shevgaonkar, “Design of subpicosecond dispersion-flattened fibers,” IEEE Photon. Technol. Lett. 8, 803–805 (1996). [CrossRef]
  29. P. Palai, R. K. Varshney, and K. Thyagarajan, “A dispersion flattening dispersion compensating fiber design for broadband dispersion compensation,” Fiber Integr. Opt. 20, 21–27 (2001).
  30. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinum generation at 1.55 um in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Opt. Express 11, 1537–1540 (2003). [CrossRef] [PubMed]
  31. K. Saitoh and M. Koshiba, “Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window,” Opt. Express 12, 2027–2032 (2004). [CrossRef] [PubMed]
  32. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000). [CrossRef]
  33. W. H. Reeves, J. C. Knight, and P. St. J. Russell, “Demonstration of ultra-flattened dispersion in photonic crystal fibers,” Opt. Express 10, 609–613 (2002). [PubMed]
  34. M. Yan, P. Shum, and C. Lu, “Hole-assisted multiring fiber with low dispersion around 1550 nm,” IEEE Photon. Technol. Lett. 16, 123–125 (2004). [CrossRef]
  35. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424, 511–515 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited