OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2211–2217

Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier

Yu Yi, Huang Lirong, Xiong Meng, Tian Peng, and Huang Dexiu  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2211-2217 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002211


View Full Text Article

Enhanced HTML    Acrobat PDF (692 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A two-electrode quantum-dot semiconductor optical amplifier (QD-SOA) is proposed to enhance gain recovery rate and cross-gain modulation (XGM) bandwidth. In the theoretical model, electron and hole dynamics as well as the carrier diffusion are accounted for in the quantum-dot rate equations, which are solved with forward and backward propagation equations of signal and amplified spontaneous emission. The simulation results show that two-electrode QD-SOA can distribute injection current density nonuniformly to maintain carriers in carrier reservoirs of quantum dot sufficient along the entire cavity length of the semiconductor optical amplifier, thus making gain saturation dynamics dominated by spectral hole burning at lower bias current than common QD-SOA. Besides, distributing more current density in the second section of the two-electrode QD-SOA at higher bias can greatly accelerate gain recovery as well as expand the XGM bandwidth.

© 2010 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(250.5980) Optoelectronics : Semiconductor optical amplifiers
(320.7130) Ultrafast optics : Ultrafast processes in condensed matter, including semiconductors

ToC Category:
Optoelectronics

History
Original Manuscript: June 30, 2010
Revised Manuscript: August 29, 2010
Manuscript Accepted: August 31, 2010
Published: October 8, 2010

Citation
Yu Yi, Huang Lirong, Xiong Meng, Tian Peng, and Huang Dexiu, "Enhancement of gain recovery rate and cross-gain modulation bandwidth using a two-electrode quantum-dot semiconductor optical amplifier," J. Opt. Soc. Am. B 27, 2211-2217 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2211


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Cotter, R. J. Manning, K. J. Blow, A. D. Ellis, A. E. Kelly, D. Nesset, I. D. Phillips, A. J. Poustie, and D. C. Rogers, “Nonlinear optics for high speed digital information processing,” Science 286, 1523–1528 (1999). [CrossRef] [PubMed]
  2. E. B. Zhou, X. L. Zhang, and D. X. Huang, “Evaluating characteristics of semiconductor optical amplifiers using optical pumping near the transparency,” J. Opt. Soc. Am. B 24, 2647–2657 (2007). [CrossRef]
  3. D. Bimberg, “Quantum dots for lasers, amplifiers and computing,” J. Phys. D: Appl. Phys. 38, 2055–2058 (2005). [CrossRef]
  4. L. R. Huang, Y. Yu, P. Tian, and D. X. Huang, “Polarization-insensitive quantum-dot coupled quantum-well semiconductor optical amplifier,” Semicond. Sci. Technol. 24, 015009 (2009). [CrossRef]
  5. J. M. Vazquez, J. Z. Zhang, and I. Galbraith, “Quantum dot versus quantum well semiconductor optical amplifiers for subpicosecond pulse amplification,” Opt. Quantum Electron. 36, 539–549 (2004). [CrossRef]
  6. R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with a –3 dB bandwidth of up to 120 nm in semi-cooled operation,” in Proceedings of the Optical Fiber Communication Conference (OFC’08) (2008), paper OTuC1.
  7. M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum-dot semiconductor optical amplifiers for high bit-rate signal processing up to 160 Gbit/s and a new scheme of 3R regenerators,” Meas. Sci. Technol. 13, 1683–1691 (2002). [CrossRef]
  8. T. Vallaitis, C. Koos, R. Bonk, W. Freude, M. Laemmlin, C. Meuer, D. Bimberg, and J. Leuthold, “Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier,” Opt. Express 16, 170–178 (2008). [CrossRef] [PubMed]
  9. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Static gain saturation model of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 44, 658–666 (2008). [CrossRef]
  10. J. Kim, M. Laemmlin, C. Meuer, D. Bimberg, and G. Eisenstein, “Theoretical and experimental study of high-speed small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45, 240–248 (2009). [CrossRef]
  11. M. Sugawara, N. Hatori, T. Akiyama, Y. Nakata, and H. Ishikawa, “Quantum dot semiconductor optical amplifiers for high bit rate signal processing over 40 Gbit/s,” Jpn. J. Appl. Phys., Part 2 40, L488–L491 (2001). [CrossRef]
  12. T. Akiyama, N. Hatori, Y. Nakata, H. Ebe, and M. Sugawara, “Pattern-effect-free amplification and cross-gain modulation achieved by using ultrafast gain nonlinearity in quantum-dot semiconductor optical amplifiers,” Phys. Status Solidi B 238, 301–304 (2003). [CrossRef]
  13. J. L. Xiao and Y. Z. Huang, “Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers,” IEEE J. Quantum Electron. 44, 448–455 (2008). [CrossRef]
  14. H. Kawaguchi, “Absorptive and dispersive bistability in semiconductor injection lasers,” Opt. Quantum Electron. 19, S1–S36 (1987). [CrossRef]
  15. Y. C. Xin, A. Martinez, T. Saiz, A. J. Moscho, Y. Li, T. A. Nilsen, A. L. Gray, and L. F. Lester, “1.3 μm Quantum-dot multisection superluminescent diodes with extremely broad bandwidth,” IEEE Photon. Technol. Lett. 19, 501–503 (2007). [CrossRef]
  16. L. R. Huang, S. H. Yu, and D. X. Huang, “Gain spectrum and saturation characteristics of two-segment semiconductor optical amplifier,” Proc. SPIE 7135, 71352C (2008). [CrossRef]
  17. P. Tian, L. R. Huang, W. Hong, and D. X. Huang, “Pattern effect reduction in all-optical wavelength conversion using two-electrode semiconductor optical amplifier,” Appl. Opt. 49, 5005–5012 (2010). [CrossRef] [PubMed]
  18. A. Sharaiha and M. Guegan, “Equivalent circuit model for multi-electrode semiconductor optical amplifiers and analysis of inline photodetection in bidirectional transmissions,” J. Lightwave Technol. 18, 700–707 (2000). [CrossRef]
  19. M. Sugawara, K. Mukai, Y. Nakata, H. Ishikawa, and A. Sakamoto, “Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1−xAs/GaAs quantum dot lasers,” Phys. Rev. B 61, 7595–7603 (2000). [CrossRef]
  20. D. G. Deppe, D. L. Huffaker, S. Csutak, Z. Zou, G. Park, and O. B. Shchekin, “Spontaneous emission and threshold characteristics of 1.3-um InGaAs-GaAs quantum-dot GaAs-based lasers,” IEEE J. Quantum Electron. 35, 1238–1246 (1999). [CrossRef]
  21. M. Sotoodeh, A. H. Khalid, and A. A. Rezazadeh, “Empirical low-field mobility model for III–V compounds applicable in device simulation codes,” J. Appl. Phys. 87, 2890–2900 (2000). [CrossRef]
  22. A. Markus, M. Rossetti, V. Calligari, J. X. Chen, and A. Fiore, “Role of thermal hopping and homogeneous broadening on the spectral characteristics of quantum dot lasers,” J. Appl. Phys. 98, 104506 (2005). [CrossRef]
  23. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69, 235332 (2004). [CrossRef]
  24. G. Talli and M. J. Adams, “Gain dynamics of semiconductor optical amplifiers and three-wavelength devices,” IEEE J. Quantum Electron. 39, 1305–1313 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited