OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2247–2254

High-efficiency polarization beam splitter based on a self-collimating photonic crystal

Jong-Moon Park, Sun-Goo Lee, Hae-Ryeong Park, and Myung-Hyun Lee  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2247-2254 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002247


View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present what we believe to be a novel high-efficiency photonic crystal polarization beam splitter that consists of a polarizing photonic crystal slab embedded in a two-dimensional self-collimating square lattice photonic crystal of air holes in silicon. The polarizing photonic crystal slab with the same lattice constant as the self-collimating photonic crystal background exhibits not only high reflection for transverse electric (TE) and high transmission for transverse magnetic (TM) polarization, but also high extinction ratios for both two-polarization output channels. Moreover, high-efficiency common antireflection structures for both TE and TM polarizations are applied at the input and output ends of the photonic crystal polarization beam splitter, thereby enabling one to achieve a highly efficient photonic crystal polarization beam splitter. It is shown that the primary transmissions exceeding 94.04% for TE and 92.39% for TM polarization output channels are achieved through the proposed photonic crystal polarization beam splitter.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices
(250.5300) Optoelectronics : Photonic integrated circuits
(310.1210) Thin films : Antireflection coatings
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: July 15, 2010
Manuscript Accepted: August 31, 2010
Published: October 12, 2010

Citation
Jong-Moon Park, Sun-Goo Lee, Hae-Ryeong Park, and Myung-Hyun Lee, "High-efficiency polarization beam splitter based on a self-collimating photonic crystal," J. Opt. Soc. Am. B 27, 2247-2254 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2247


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, 1995).
  4. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Superprism phenomena in photonic crystals,” Phys. Rev. B 58, R10096 (1998). [CrossRef]
  5. E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, “Negative refraction by photonic crystals,” Nature 423, 604–605 (2003). [CrossRef] [PubMed]
  6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212–1214 (1999). [CrossRef]
  7. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246–1257 (2002). [CrossRef]
  8. S. Kim, G. P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384–2386 (2003). [CrossRef] [PubMed]
  9. X. Y. Ao and S. L. He, “Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction,” Opt. Lett. 30, 2152–2154 (2005). [CrossRef] [PubMed]
  10. E. Schonbrun, Q. Wu, W. Park, T. Yamashita, and C. J. Summers, “Polarization beam splitter based on a photonic crystal heterostructure,” Opt. Lett. 31, 3104–3106 (2006). [CrossRef] [PubMed]
  11. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O’Faolin, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530–532 (2007). [CrossRef] [PubMed]
  12. S.-G. Lee, J.-s. Choi, J.-E. Kim, H. Y. Park, and C.-S. Kee, “Reflection minimization at two-dimensional photonic crystal interfaces,” Opt. Express 16, 4270–4277 (2008). [CrossRef] [PubMed]
  13. J.-M. Park, S.-G. Lee, H. Y. Park, and J.-E. Kim, “Efficient beaming of self-collimated light from photonic crystals,” Opt. Express 16, 20354–20367 (2008). [CrossRef] [PubMed]
  14. S.-G. Lee, M. Yi, J. Ahn, J.-E. Kim, and H. Y. Park, “Optimization of photonic crystal interfaces for high efficient coupling of terahertz waves,” in International Conference on Infrared and Millimeter Waves/THz Electronics (IRMMW-THz 2008) (IEEE, 2008), pp. 1–2. [CrossRef]
  15. J.-M. Park, S.-G. Lee, H. Y. Park, J.-E. Kim, and M.-H. Lee, “High-efficiency antireflection structures for terahertz self-collimating photonic crystals,” J. Opt. Soc. Am. B 26, 1967–1974 (2009). [CrossRef]
  16. T.-T. Kim, S.-G. Lee, M.-W. Kim, H. Y. Park, and J.-E. Kim, “Experimental demonstration of reflection minimization at two-dimensional photonic crystal interfaces via antireflection structures,” Appl. Phys. Lett. 95, 011119 (2009). [CrossRef]
  17. J.-M. Park, S.-G. Lee, H.-R. Park, and M.-H. Lee, “Self-collimating photonic crystal antireflection structure for both TE and TM polarizations,” Opt. Express 18, 13083–13093 (2010). [CrossRef] [PubMed]
  18. K. S. Yee, “Numerical solution of initial boundary problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propag. AP-14, 302–307 (1966).
  19. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  20. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett. 65, 3152–3155 (1990). [CrossRef] [PubMed]
  21. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). [CrossRef] [PubMed]
  22. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, 1999), pp. 63–74.
  23. F. J. Lawrence, L. C. Botten, K. B. Dossou, and C. Martijn de Sterke, “Antireflection coatings for two-dimensional photonic crystals using a rigorous impedance definition,” Appl. Phys. Lett. 93, 121114 (2008). [CrossRef]
  24. T. Ergin, N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, “Three-dimensional invisibility cloak at optical wavelengths,” Science 328, 337–339 (2010). [CrossRef] [PubMed]
  25. S. Adachi, “Model dielectric constants of Si and Ge,” Phys. Rev. B 38, 12966–12976 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited