OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2262–2272

First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling

Adam Mock  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2262-2272 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A laser threshold condition derived from the instantaneous form of Maxwell’s equations is presented. This derivation incorporates the passive quality factor of the resonator and is particularly amenable to semiconductor microcavity lasers. The optical confinement factor is derived and compared to previous reports. The threshold condition derived here is compared to the results of active cavity finite-difference time-domain calculations, and excellent agreement is found.

© 2010 Optical Society of America

OCIS Codes
(140.2020) Lasers and laser optics : Diode lasers
(140.3410) Lasers and laser optics : Laser resonators
(140.3430) Lasers and laser optics : Laser theory
(140.3460) Lasers and laser optics : Lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 14, 2010
Revised Manuscript: August 27, 2010
Manuscript Accepted: August 29, 2010
Published: October 13, 2010

Adam Mock, "First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling," J. Opt. Soc. Am. B 27, 2262-2272 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. P. Gordon, H. J. Zeiger, and C. H. Townes, “The maser—new type of microwave amplifier, frequency standard and spectrometer,” Phys. Rev. 99, 1264–1274 (1955). [CrossRef]
  2. W. W. Anderson, “Mode confinement and gain in junction lasers,” IEEE J. Quantum Electron. QE-1, 228–236 (1965). [CrossRef]
  3. Y.-Z. Huang, Z. Pan, and R.-H. Wu, “Analysis of the optical confinement factor in semiconductor lasers,” J. Appl. Phys. 79, 3827–3830 (1996). [CrossRef]
  4. T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, “Confinement factors and gain in optical amplifiers,” IEEE J. Quantum Electron. 33, 1763–1766 (1997). [CrossRef]
  5. P. Royo, R. Koda, and L. A. Coldren, “Vertical cavity semiconductor optical amplifiers: Comparison of Fabry–Pérot and rate equation approaches,” IEEE J. Quantum Electron. 38, 279–284 (2002). [CrossRef]
  6. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16, 16659–16669 (2008). [CrossRef] [PubMed]
  7. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  8. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995).
  9. A. Yariv, Optical Electronics in Modern Communications (Oxford University Press, 1997).
  10. J. Singh, Electronic and Optoelectronic Properties of Semiconductor Structures (Cambridge U. Press, 2003).
  11. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, 2003).
  12. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  13. W. Kuang, J. R. Cao, T. Yang, S.-J. Choi, P.-T. Lee, J. D. O’Brien, and P. D. Dapkus, “Classification of modes in suspended-membrane, 19-missing-hole photonic-crystal microcavities,” J. Opt. Soc. Am. B 22, 1092–1099 (2005). [CrossRef]
  14. K. Nozaki, S. Kita, and T. Baba, “Room temperature continuous wave operation and controlled spontaneous emission in ultrasmall photonic crystal nanolaser,” Opt. Express 15, 7506–7514 (2007). [CrossRef] [PubMed]
  15. A. Mock, L. Lu, and J. D. O’Brien, “Spectral properties of photonic crystal double heterostructure resonant cavities,” Opt. Express 16, 9391–9397 (2008). [CrossRef] [PubMed]
  16. A. Mock, L. Lu, E. H. Hwang, J. O’Brien, and P. D. Dapkus, “Modal analysis of photonic crystal double-heterostructure laser cavities,” IEEE J. Sel. Top. Quantum Electron. 15, 892–900 (2009). [CrossRef]
  17. L. Lu, A. Mock, M. Bagheri, E. H. Hwang, J. D. O’Brien, and P. D. Dapkus, “Double-heterostructure photonic crystal lasers with reduced threshold pump power and increased slope efficiency obtained by quantum well intermixing,” Opt. Express 16, 17342–17347 (2008). [CrossRef] [PubMed]
  18. T. Yang, S. Lipson, J. D. O’Brien, and D. G. Deppe, “InAs quantum dot photonic crystal lasers and their temperature dependence,” IEEE Photon. Technol. Lett. 17, 2244–2246 (2005). [CrossRef]
  19. T. Yang, A. Mock, J. D. O’Brien, S. Lipson, and D. G. Deppe, “Lasing characteristics of InAs quantum dot microcavity lasers as a function of temperature and wavelength,” Opt. Express 15, 7281–7289 (2007). [CrossRef] [PubMed]
  20. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, H.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004). [CrossRef] [PubMed]
  21. M.-K. Seo, K.-Y. Jeong, J.-K. Yang, Y.-H. Lee, H.-G. Park, and S.-B. Kim, “Low threshold current single-cell hexapole mode photonic crystal laser,” Appl. Phys. Lett. 90, 171122 (2007). [CrossRef]
  22. T. Yang, A. Mock, J. D. O’Brien, S. Lipson, and D. G. Deppe, “Edge-emitting photonic crystal double-heterostructure nanocavity lasers with InAs quantum dot active material,” Opt. Lett. 32, 1153–1155 (2007). [CrossRef] [PubMed]
  23. G. Björk and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27, 2386–2396 (1991). [CrossRef]
  24. G. Björk, A. Karlsson, and Y. Yamamoto, “Definition of a laser threshold,” Phys. Rev. A 50, 1675–1680 (1994). [CrossRef] [PubMed]
  25. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  26. L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Butterworth Heinemann, 2004).
  27. J. Vŭcković, O. Painter, Y. Xu, A. Yariv, and A. Scherer, “Finite-difference time-domain calculation of the spontaneous emission coupling factor in optical micro-cavities,” IEEE J. Quantum Electron. 35, 1168–1175 (1999). [CrossRef]
  28. M. H. Shih, W. Kuang, T. Yang, M. Bagheri, Z.-J. Wei, S.-J. Choi, L. Lu, J. D. O’Brien, and P. D. Dapkus, “Experimental characterization of the optical loss of sapphire-bonded photonic crystal laser cavities,” IEEE Photon. Technol. Lett. 18, 535–537 (2006). [CrossRef]
  29. L. Lu, A. Mock, T. Yang, M. H. Shih, E. H. Hwang, M. Bagheri, A. Stapleton, S. Farrell, J. D. O’Brien, and P. D. Dapkus, “120 μW peak output power from edge-emitting photonic crystal double heterostructure nanocavity lasers,” Appl. Phys. Lett. 94, 111101 (2009). [CrossRef]
  30. Y. Tanaka, T. Asano, R. Hatsuta, and S. Noda, “Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding,” Appl. Phys. Lett. 88, 011112 (2006). [CrossRef]
  31. A. Mock and J. D. O’Brien, “Strategies for reducing the out-of-plane radiation in photonic crystal heterostructure microcavities for continuous wave laser applications,” J. Lightwave Technol. 28, 1042–1050 (2010). [CrossRef]
  32. J. A. Stratton, Electromagnetic Theory (McGraw Hill, 1941).
  33. S. C. Hagness, R. M. Joseph, and A. Taflove, “Subpicosecond electrodynamics of distributed Bragg reflector microlasers: Results from finite difference time domain simulations,” Radio Sci. 31, 931–941 (1996). [CrossRef]
  34. D. K. Cheng, Field and Wave Electromagnetics (Wesley, 1992).
  35. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk laser,” Appl. Phys. Lett. 60, 289–291 (1992). [CrossRef]
  36. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Na-rimonov, S. Stout, and E. Herz, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  37. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005). [CrossRef]
  38. B.-S. Song, T. Asano, and S. Noda, “Heterostructures in two-dimensional photonic-crystal slabs and their application to nanocavities,” J. Phys. D 40, 2629–2634 (2007). [CrossRef]
  39. W. C. Stumpf, M. Fujita, M. Yamaguchi, T. Asano, and S. Noda, “Light-emission properties of quantum dots embedded in a photonic double-heterostructure nanocavity,” Appl. Phys. Lett. 90, 231101 (2007). [CrossRef]
  40. K. Sakoda, Optical Properties of Photonic Crystals (Springer, 2001).
  41. A. Mock and J. D. O’Brien, “Direct extraction of large quality factors and resonant frequencies from Padé interpolated resonance spectra,” Opt. Quantum Electron. 40, 1187–1192 (2008). [CrossRef]
  42. M. Kretschmann and A. Maradudin, “Lasing action in waveguide systems and the influence of rough walls,” J. Opt. Soc. Am. B 21, 150–158 (2004). [CrossRef]
  43. A. S. Nagra and R. A. York, “FDTD analysis of wave propagation in nonlinear absorbing and gain media,” IEEE Trans. Antennas Propag. 46, 334–340 (1998). [CrossRef]
  44. G. H. Song, S. Kim, and K. Hwang, “FDTD simulation of photonic-crystal lasers and their relaxation oscillation,” Journal of the Optical Society of Korea 6, 87–95 (2002). ISSN 1276-4776. [CrossRef]
  45. G. M. Slavcheva, J. M. Arnold, and R. W. Ziolkowski, “FDTD simulation of the nonlinear gain dynamics in active optical waveguides and semiconductor microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1052–1062 (2004). [CrossRef]
  46. S.-H. Chang and A. Taflove, “Finite-difference time-domain model of lasing action in a four-level two-electron atomic system,” Opt. Express 12, 3827–3833 (2004). [CrossRef] [PubMed]
  47. M. Bahl, H. Rao, N. C. Panoiu, and R. M. Osgood, “Simulation of mode-locked surface-emitting lasers through a finite-difference time-domain algorithm,” Opt. Lett. 29, 1689–1691 (2004). [CrossRef] [PubMed]
  48. M. Bahl, N. C. Panoiu, and R. M. Osgood, “Modeling ultrashort field dynamics in surface emitting lasers by using finite-difference time-domain method,” IEEE J. Quantum Electron. 41, 1244–1252 (2005). [CrossRef]
  49. Y. Huang and S.-T. Ho, “Computational model of solid-state, molecular, or atomic media for FDTD simulation based on a multi-level multi-electron system governed by Pauli exclusion and Fermi–Dirac thermalization with application to semiconductor photonics,” Opt. Express 14, 3569–3587 (2006). [CrossRef] [PubMed]
  50. M.-K. Seo, G. H. Song, H. In-Kag, and Y.-H. Lee, “Nonlinear dispersive three-dimensional finite-difference time-domain analysis for photonic-crystal lasers,” Opt. Express 13, 9645–9651 (2005). [CrossRef] [PubMed]
  51. W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, “A finite-difference time-domain method for the simulation of gain materials with carrier diffusion in photonic crystals,” J. Lightwave Technol. 25, 2306–2314 (2007). [CrossRef]
  52. S. Shi and D. W. Prather, “Lasing dynamics of a silicon photonic crystal micro-cavity,” Opt. Express 15, 10294–10302 (2007). [CrossRef] [PubMed]
  53. K. Nozaki and T. Baba, “Carrier and photon analyses of photonic microlasers by two-dimensional rate equations,” IEEE J. Sel. Areas Commun. 23, 1411–1417 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited