OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2273–2278

All-optical wavelength converter based on a heterogeneously integrated GaP on a silicon-on-insulator waveguide

Nahid Talebi and Mahmoud Shahabadi  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2273-2278 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002273


View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A micrometer-scaled optical wavelength converter based on a multilayer structure is presented. The proposed structure is comprised of a grating of GaP nano-ribs heterogeneously integrated on the upper layer of a silicon-on-insulator waveguide. The GaP grating is used to couple the incident wave into the propagating modes of the waveguide and also to double the frequency of the incident light due to the second-harmonic generation process in GaP. The performance of this structure is numerically investigated using the generalized multipole technique for the linear analysis and the finite-difference time-domain method for the nonlinear analysis.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(130.4310) Integrated optics : Nonlinear
(130.7405) Integrated optics : Wavelength conversion devices

ToC Category:
Integrated Optics

History
Original Manuscript: April 26, 2010
Revised Manuscript: August 11, 2010
Manuscript Accepted: August 25, 2010
Published: October 13, 2010

Citation
Nahid Talebi and Mahmoud Shahabadi, "All-optical wavelength converter based on a heterogeneously integrated GaP on a silicon-on-insulator waveguide," J. Opt. Soc. Am. B 27, 2273-2278 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2273


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, and M. Pannicia, “An all-silicon Raman laser,” Nature 433, 292–294 (2005). [CrossRef] [PubMed]
  2. Q. Xu, V. R. Almeida, and M. Lipson, “Micrometer-scale all-optical wavelength converter on silicon,” Opt. Lett. 30, 2733–2735 (2005). [CrossRef] [PubMed]
  3. H. Rong, Y. Kuo, A. Liu, M. Paniccia, and O. Cohen, “High efficiency wavelength conversion of 10 Gb/s data in silicon waveguides,” Opt. Express 14, 1182–1188 (2006). [CrossRef] [PubMed]
  4. K. Gallo, C. Codemard, C. B. Gawith, J. Nilsson, P. G. R. Smith, N. G. R. Broderick, and D. J. Richardson, “Guided-wave second-harmonic generation in a LiNbO3 nonlinear photonic crystal,” Opt. Lett. 31, 1232–1234 (2006). [CrossRef] [PubMed]
  5. M. M. Fejer, “Nonlinear optical frequency conversion,” Phys. Today 47(5), 25–32 (1994). [CrossRef]
  6. R. W. Boyd, Nonlinear Optics (Elsevier, 2008).
  7. S. Stivala, A. C. Busacca, A. Pasquazi, R. L. Oliveri, R. Morandotti, and G. Assanto, “Random quasi-phase matched second harmonic generation in periodically poled lithium tantalate,” Opt. Lett. 35, 363–365 (2010). [CrossRef] [PubMed]
  8. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature 391, 463–466 (1998). [CrossRef]
  9. K. Chen, C. Durak, J. R. Heflin, and H. D. Robinson, “Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films,” Nano Lett. 7, 254–258 (2007). [CrossRef] [PubMed]
  10. L. Liu, J. V. Campenhout, G. Roelkens, D. V. Thourhout, P. Rojo-Romeo, P. Regreny, C. Seassal, J. Fédéli, and R. Baets, “Ultralow-power all-optical wavelength conversion in a silicon-on-insulator waveguide based on a heterogeneously integrated III-V microdisk laser,” Appl. Phys. Lett. 93, 061107 (2008). [CrossRef]
  11. J. V. Campenhout, P. Rojo-Romeo, P. Regreny, C. Seassal, D. V. Thourhout, S. Verstuyft, L. Di Cioccio, J. M. Fedeli, C. Lagahe, and R. Baets, “Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit,” Opt. Express 15, 6744–6749 (2007). [CrossRef] [PubMed]
  12. Y. Halioua, T. J. Karle, F. Raineri, P. Monnier, I. Sagnes, G. Roelkens, D. V. Thourhout, and R. Raj, “Hybrid InP-based photonic crystal lasers on silicon on insulator wires,” Appl. Phys. Lett. 95, 201119 (2009). [CrossRef]
  13. T. J. Grassman, M. R. Brenner, S. Rajagopalan, R. Unocic, R. Dehoff, M. Mills, H. Fraser, and S. A. Ringel, “Control and elimination of nucleation-related defects in GaP/Si (001) heteroepitaxy,” Appl. Phys. Lett. 94, 232106 (2009). [CrossRef]
  14. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vuckovic, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17, 22609–22615 (2009). [CrossRef]
  15. Y. Dumeige, F. Raineri, A. Levenson, and X. Letarte, “Second-harmonic generation in one-dimensional photonic edge waveguides,” Phys. Rev. E 68, 066617 (2003). [CrossRef]
  16. B. Maes, P. Bienstman, R. Baets, B. Hu, P. Sewell, and T. Benson, “Modeling comparison of second-harmonic generation in high-index-contrast devices,” Opt. Quantum Electron. 40, 13–22 (2008). [CrossRef]
  17. C. M. Reinke, A. Jafarpour, B. Momeni, M. Soltani, S. Khorasani, A. Adibi, Y. Xu, and R. K. Lee, “Nonlinear finite-difference time-domain method for the simulation of anisotropic; χ(2) and χ(3) optical effects,” J. Lightwave Technol. 24, 624–634 (2006). [CrossRef]
  18. R. M. Joseph and A. Taflove, “FDTD Maxwell’s equations models for nonlinear electrodynamics and optics,” IEEE Trans. Antennas Propag. 45, 364–374 (1997). [CrossRef]
  19. N. Talebi and M. Shahabadi, “Plasmonic ring resonator,” J. Opt. Soc. Am. B 25, 2116–2122 (2008). [CrossRef]
  20. N. Talebi and M. Shahabadi, “Analysis of the propagation of light along an array of nanorods using the generalized multipole technique,” J. Comput. Theor. Nanosci. 5, 711–716 (2008). [CrossRef]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  22. R. K. Chang, J. Ducuing, and N. Bloembergen, “Dispersion of the optical nonlinearity in semiconductors,” Phys. Rev. Lett. 15, 415–418 (1965). [CrossRef]
  23. R. A. Soref, Z. Qiang, and W. Zhou, “Far infrared photonic crystals operating in the Reststrahl region,” Opt. Express 15, 10637–10648 (2007). [CrossRef] [PubMed]
  24. M. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data (Springer, 2005). [CrossRef]
  25. J. Wang, J. Sun, and Q. Sun, “Experimental observation of a 1.5 μm band wavelength conversion and logic NOT gate at 40 Gbit/s based on sum-frequency generation,” Opt. Lett. 31, 1711–1713 (2006). [CrossRef] [PubMed]
  26. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5 μm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguide with integrated coupling structures,” Opt. Lett. 23, 1004–1006 (1998). [CrossRef]
  27. J. Wang, J. Sun, C. Luo, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405–7414 (2005). [CrossRef] [PubMed]
  28. S. Singh and R. S. Kaller, “Wide-band optical wavelength converter based on four-wave mixing using optimized semiconductor optical amplifier,” Fiber Integr. Opt. 25, 213–230 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited