OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2298–2303

Investigation of terahertz surface waves of a metallic nanowire

Xiaoyong He  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2298-2303 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (505 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The influence of the nonlocal effect on the optical properties of terahertz waves propagating along a metallic nanowire has been investigated, taking into account the effects of the composed materials, metal wire radii, and radiation frequencies. The results manifest that the nonlocal effect has significant influence on the propagation properties of terahertz nanowire surface waves. The contour results show that as metal wire radii increase, the phase velocity increases, and the attenuation losses decrease. On condition that the metallic nanowire radius is small (tens of nanometers), the attenuation losses of the surface waves decrease with the increasing of frequency. The numerical results are very useful for the development of nanoplasmonic devices in the fields of terahertz spectroscopy, biological sensors, and detectors.

© 2010 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves
(260.3090) Physical optics : Infrared, far
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Optics at Surfaces

Original Manuscript: August 24, 2010
Manuscript Accepted: September 3, 2010
Published: October 14, 2010

Xiaoyong He, "Investigation of terahertz surface waves of a metallic nanowire," J. Opt. Soc. Am. B 27, 2298-2303 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002). [CrossRef]
  2. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6, 126–130 (2010). [CrossRef]
  3. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, “Terahertz semiconductor-heterostructure laser,” Nature 417, 156–159 (2002). [CrossRef] [PubMed]
  4. H. Li, J. C. Cao, and J. T. Lü, “Monte Carlo simulation of carrier transport and output characteristics of terahertz quantum cascade lasers,” J. Appl. Phys. 103, 103113 (2008). [CrossRef]
  5. J. T. Lü and J. C. Cao, “Monte Carlo simulation of hot phonon effects in resonant-phonon-assisted terahertz quantum-cascade lasers,” Appl. Phys. Lett. 88, 061119 (2006). [CrossRef]
  6. J. C. Cao, “Interband impact ionization and nonlinear absorption of terahertz radiations in semiconductor heterostructures,” Phys. Rev. Lett. 91, 237401 (2003). [CrossRef] [PubMed]
  7. A. R. Wright, J. C. Cao, and C. Zhang, “Enhanced optical conductivity of bilayer grapheme nanoribbons in the terahertz regime,” Phys. Rev. Lett. 103, 207401 (2009). [CrossRef]
  8. R. Mendis and D. Grischkowsky, “Plastic ribbon THz waveguide,” J. Appl. Phys. 88, 4449–4451 (2000). [CrossRef]
  9. J. Q. Zhang and D. Grischkowsky, “Adiabatic compression of parallel-plate metal waveguides for sensitivity enhancement of waveguide THz time-domain spectroscopy,” Appl. Phys. Lett. 86, 061109 (2005). [CrossRef]
  10. X. Y. He, “Numerical analysis of the propagation properties of subwavelength semiconductor slit in the terahertz region,” Opt. Express 17, 15359–15371 (2009). [CrossRef] [PubMed]
  11. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17, 14839–14850 (2009). [CrossRef] [PubMed]
  12. H. Zhan, R. Mendis, and D. M. Mittleman, “Superfocusing terahertz waves below λ/250 using plasmonic parallel-plate waveguides,” Opt. Express 18, 9643–9650 (2010). [CrossRef] [PubMed]
  13. X. Y. He, “Comparison of the waveguide properties of gap surface plasmon in the terahertz region and visible spectra,” J. Opt. A, Pure Appl. Opt. 11, 045708 (2009). [CrossRef]
  14. K. L. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004). [CrossRef] [PubMed]
  15. K. L. Wang and D. M. Mittleman, “Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,” Phys. Rev. Lett. 96, 157401 (2006). [CrossRef] [PubMed]
  16. J. A. Deibel, K. L. Wang, M. D. Escarra, and D. M. Mittleman, “Enhanced coupling of terahertz radiation to cylindrical wire waveguides,” Opt. Express 14, 279–290 (2006). [CrossRef] [PubMed]
  17. H. Cao and A. Nahata, “Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves,” Opt. Express 13, 7028–7034 (2005). [CrossRef] [PubMed]
  18. L. F. Shen, X. D. Chen, Y. Zhang, and K. Agarwal, “Effect of absorption on terahertz surface plasmon polaritons propagating along periodically corrugated metal wires,” Phys. Rev. B 77, 075408 (2008). [CrossRef]
  19. S. A. Maier, S. R. Andrews, L. Martin-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  20. Q. Cao and J. Jahns, “Azimuthally polarized surface plasmons as effective terahertz waveguides,” Opt. Express 13, 511–518 (2005). [CrossRef] [PubMed]
  21. X. Y. He, J. C. Cao, and S. L. Feng, “Simulation of the propagation properties of metal wires terahertz waveguides,” Chin. Phys. Lett. 23, 2066–2069 (2006). [CrossRef]
  22. Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, “Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide,” Opt. Express 16, 271–278 (2008). [CrossRef] [PubMed]
  23. X. Y. He, “Investigation of terahertz Sommerfeld wave propagation along conical metal wire,” J. Opt. Soc. Am. B 26, A23–A28 (2009). [CrossRef]
  24. V. Astley, R. Mendis, and D. M. Mittleman, “Characterization of terahertz field confinement at the end of a tapered metal wire waveguide,” Appl. Phys. Lett. 95, 031104 (2009). [CrossRef]
  25. M. Mbonye, R. Mendis, and D. M. Mittleman, “A terahertz two-wire waveguide with low bending loss,” Appl. Phys. Lett. 95, 233506 (2009). [CrossRef]
  26. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98, 266802 (2007). [CrossRef] [PubMed]
  27. R. Adam, L. Chusseau, T. Grosjean, A. Penarier, J. Guillet, and D. Charraut, “Near-field wire-based passive probe antenna for the selective detection of the longitudinal electric field at terahertz frequencies,” J. Appl. Phys. 106, 073107 (2009). [CrossRef]
  28. D. Wu, N. Fang, C. Sun, X. Zhang, W. J. Padilla, D. N. Basov, D. R. Smith, and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003). [CrossRef]
  29. R. Gordon, “Reflection of cylindrical surface waves,” Opt. Express 17, 18621–18629 (2009). [CrossRef]
  30. S. J. Al-Bader and H. A. Jamid, “Diffraction of surface plasmon modes on abruptly terminated metallic nanowires,” Phys. Rev. B 76, 235410 (2007). [CrossRef]
  31. A. J. Huber, F. KeilmannF. J. Wittborn, J. Aizpurua, and R. Hillenbrand, “Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices,” Nano Lett. 8, 3766–3770 (2008). [CrossRef] [PubMed]
  32. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93, 137404 (2004). [CrossRef] [PubMed]
  33. R. Ruppin, “Effect of non-locality on nanofocusing of surface plasmon field intensity in a conical tip,” Phys. Lett. A 340, 299–302 (2005). [CrossRef]
  34. G. Goubau, “Surface waves and their application to transmission lines,” J. Appl. Phys. 21, 1119–1128 (1950). [CrossRef]
  35. M. J. King and J. C. Wiltse, “Surface-wave propagation on coated or uncoated metal wires at millimeter wavelengths,” IRE Trans. Antennas Propag. 10, 246–254 (1962). [CrossRef]
  36. M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W,” Appl. Opt. 24, 4493–4499 (1985). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited