OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2313–2321

Lumped versus distributed description of mode-locked fiber lasers

Alexandr Zaviyalov, Rumen Iliew, Oleg Egorov, and Falk Lederer  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2313-2321 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (312 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present an analytical derivation of the distributed model from the experimentally well confirmed lumped approach for the description of light propagation in mode-locked fiber lasers operating in the scalar regime where the dynamics is mainly governed by the propagation of a single field component. As a limiting case of the distributed model we identify the complex cubic-quintic Ginzburg–Landau equation (CQGLE). One important result consists of deriving explicit relations between the coefficients of the distributed models to the realistic laser parameters. We numerically demonstrate that the results obtained by using the general distributed model are in very good agreement with those of the lumped model, whereas results of the CQGLE can significantly deviate for a certain range of parameters. Moreover, we demonstrate that the validity of the CQGLE approach strongly depends on the operation regime of the saturable absorber.

© 2010 Optical Society of America

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(140.3510) Lasers and laser optics : Lasers, fiber
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 19, 2010
Revised Manuscript: August 20, 2010
Manuscript Accepted: August 21, 2010
Published: October 18, 2010

Alexandr Zaviyalov, Rumen Iliew, Oleg Egorov, and Falk Lederer, "Lumped versus distributed description of mode-locked fiber lasers," J. Opt. Soc. Am. B 27, 2313-2321 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Chong, W. Renniger, and F. Wise, “All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ,” Opt. Lett. 32, 2408–2410 (2007). [CrossRef] [PubMed]
  2. F. Ilday, J. Buckley, L. Kuznetsova, and F. Wise, “Generation of 36-femtosecond pulses from a ytterbium fiber laser,” Opt. Express 11, 3550–3554 (2003). [CrossRef] [PubMed]
  3. L. R. Wang, X. M. Liu, and Y. K. Gong, “Giant-chirp oscillator for ultra-large net-normal dispersion fiber lasers,” Laser Phys. Lett. 7, 63–67 (2010). [CrossRef]
  4. B. Ortaç, A. Zaviyalov, C. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35, 1578–1580 (2010). [CrossRef] [PubMed]
  5. P. Grelu and J. M. Soto-Crespo, “Temporal soliton molecules in mode-locked lasers: collisions, pulsations and vibrations” in Dissipative Solitons: From Optics to Biology and Medicine, N.Akhmediv and A.Ankiewicz, eds. (Springer, 2008), pp. 137–173. [CrossRef]
  6. B. Ortaç, M. Plötner, T. Schreiber, J. Limpert, and A. Tünnermann, “Experimental and numerical study of pulse dynamics in positive net-cavity dispersion modelocked Yb-doped fiber lasers,” Opt. Express 15, 15595–15602 (2007). [CrossRef]
  7. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975). [CrossRef]
  8. L. Mollenauer, S. Evangelides, and H. Haus, “Long-distance soliton propagation using lumped amplifiers and dispersion shifted fiber,” J. Lightwave Technol. 9, 194–197 (1991). [CrossRef]
  9. N. N. Akhmediev and A. Ankiewicz, Solitons, Nonlinear Pulses and Beams (Chapman and Hall, 1997).
  10. N. Akhmediev and A. Ankiewicz, “Three sources and three component parts of the concept of dissipative solitons” in Dissipative Solitons: From Optics to Biology and Medicine, N.Akhmediv and A.Ankiewicz, eds. (Springer, 2008), pp. 1–28. [CrossRef]
  11. A. Komarov, H. Leblond, and F. Sanchez, “Quintic complex Ginzburg-Landau model for ring fiber lasers,” Phys. Rev. E 72, 025604(R) (2005). [CrossRef]
  12. E. Ding and N. Kutz, “Operating regimes, split-step modeling, and the Haus master mode-locking model,” J. Opt. Soc. Am. B 26, 2290–2300 (2009). [CrossRef]
  13. G. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  14. A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Discrete family of dissipative soliton pairs in mode-locked fiber lasers,” Phys. Rev. A 79, 053841 (2009). [CrossRef]
  15. A. Hasegawa and Y. Kodama, “Guiding-center soliton in optical fibers,” Opt. Lett. 15, 1443–1445 (1990). [CrossRef] [PubMed]
  16. U. Peschel, D. Michaelis, Z. Bakonyi, G. Onishchukov, and F. Lederer, “Dynamics of dissipative temporal solitons,” in Dissipative Solitons, N.Akhmediv and A.Ankiewicz, eds. (Springer, 2005), pp. 161–181. [CrossRef]
  17. G. Agrawal, “Optical pulse propagation in doped fiber amplifiers,” Phys. Rev. A 44, 7493–7501 (1991). [CrossRef] [PubMed]
  18. G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1997). [CrossRef]
  19. J. H. B. Nijhof, W. Forysiak, and N. J. Doran, “Dispersion-managed solitons in the normal dispersion regime: a physical interpretation,” Opt. Lett. 23, 1674–1676 (1998). [CrossRef]
  20. A. Hasegawa, Y. Kodama, and A. Maruto, “Recent progress in dispersion-managed soliton transmission technologies,” Opt. Fiber Technol. 3, 197–213 (1997). [CrossRef]
  21. A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Dissipative molecules with independently evolving or flipping phases in mode-locked fiber lasers,” Phys. Rev. A 80, 043829 (2009). [CrossRef]
  22. A. Zavyalov, R. Iliew, O. Egorov, and F. Lederer, “Hysteresis of dissipative soliton molecules in mode-locked fiber lasers,” Opt. Lett. 34, 3827–3829 (2009). [CrossRef] [PubMed]
  23. V. L. Kalashnikov, D. O. Krimer, I. G. Poloyko, and V. P. Mikhailov, “Ultrashort pulse generation in cw solid-state lasers with semiconductor saturable absorber in the presence of the absorption linewidth enhancement,” Opt. Commun. 159, 237–242 (1999). [CrossRef]
  24. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73, 653–662 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited