OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2328–2335

Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers

O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2328-2335 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002328


View Full Text Article

Enhanced HTML    Acrobat PDF (404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report an experimental study of the nonlinear propagation of femtosecond pulses in solid-core photonic bandgap fibers. An extreme deceleration of the soliton self-frequency shift accompanied by a spectral compression is observed near the photonic bandgap edge. In practice, this extreme deceleration is equivalent to a suppression of the soliton self-frequency shift and so to a stabilization of the soliton frequency. The physical origin of this phenomenon is discussed with the help of numerical simulations. Finally, a simple model is proposed to identify the main physical mechanism responsible for the extreme deceleration of soliton self-frequency shift. In the case of our fiber design, it is mainly due to the strong third-order dispersion experienced by the soliton as it approaches the photonic bandgap edge.

© 2010 Optical Society of America

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(190.5650) Nonlinear optics : Raman effect
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: July 16, 2010
Revised Manuscript: August 31, 2010
Manuscript Accepted: September 1, 2010
Published: October 18, 2010

Citation
O. Vanvincq, A. Kudlinski, A. Bétourné, Y. Quiquempois, and G. Bouwmans, "Extreme deceleration of the soliton self-frequency shift by the third-order dispersion in solid-core photonic bandgap fibers," J. Opt. Soc. Am. B 27, 2328-2335 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2328


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29, 2369–2371 (2004). [CrossRef] [PubMed]
  2. G. Bouwmans, L. Bigot, Y. Quiquempois, F. Lopez, L. Provino, and M. Douay, “Fabrication and characterization of an all-solid 2D photonic bandgap fiber with a low-loss region (<20 dB/km) around 1550 nm,” Opt. Express 13, 8452–8459 (2005). [CrossRef] [PubMed]
  3. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and Jie Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32, 1023–1025 (2007). [CrossRef] [PubMed]
  4. P. S. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24, 4729–4749 (2006). [CrossRef]
  5. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. S. J. Russell, “Guidance properties of low-contrast photonic bandgap fibres,” Opt. Express 13, 2503–2511 (2005). [CrossRef] [PubMed]
  6. V. Pureur, A. Betourne, G. Bouwmans, L. Bigot, A. Kudlinski, K. Delplace, A. Le Rouge, Y. Quiquempois, and M. Douay, “Overview on solid core photonic bandgap fibers,” Fiber Integr. Opt. 28, 27–50 (2009). [CrossRef]
  7. V. Pureur and J. M. Dudley, “Nonlinear spectral broadening of femtosecond pulses in solid-core photonic bandgap fibers,” Opt. Lett. 35, 2813–2815 (2010). [CrossRef] [PubMed]
  8. B. W. Liu, M. L. Hu, X.H. Fang, Y.F. Li, L. Chai, J.Y. Li, W. Chen, and C.Y. Wang, “Tunable bandpass filter with solid-core photonic bandgap fiber and Bragg fiber,” IEEE Photon. Technol. Lett. 20, 581–583 (2008). [CrossRef]
  9. V. Pureur, L. Bigot, G. Bouwmans, Y. Quiquempois, M. Douay, and Y. Jaouen, “Ytterbium-doped solid core photonic bandgap fiber for laser operation around 980 nm,” Appl. Phys. Lett. 92, 061113 (2008). [CrossRef]
  10. A. Wang, A. George, and J. Knight, “Three-level neodymium fiber laser incorporating photonic bandgap fiber,” Opt. Lett. 31, 1388–1390 (2006). [CrossRef] [PubMed]
  11. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngso, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150–1200 nm,” Opt. Express 17, 447–454 (2009). [CrossRef] [PubMed]
  12. A. Bétourné, A. Kudlinski, G. Bouwmans, O. Vanvincq, A. Mussot, and Y. Quiquempois, “Control of supercontinuum generation and soliton self-frequency shift in solid-core photonic bandgap fibers,” Opt. Lett. 34, 3083–3085 (2009). [CrossRef] [PubMed]
  13. B. Kibler, T. Martynkien, M. Szpulak, C. Finot, J. Fatome, J. Wojcik, W. Urbanczyk, and S. Wabnitz, “Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber,” Opt. Express 17, 10393–10398 (2009). [CrossRef] [PubMed]
  14. E. M. Dianov, A. Ya. Karasik, P. V. Mamyshev, A. S. M. Prokhorov, V. N. Serkin, M. F. Stel’makh, and A. A. Fomichev, “Stimulated-Raman conversion of multisoliton pulses in quartz optical fibers,” JETP Lett. 41, 294–297 (1985).
  15. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11, 659–661 (1986). [CrossRef] [PubMed]
  16. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986). [CrossRef] [PubMed]
  17. K. J. Blow, N. J. Doran, and D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301–1304 (1988). [CrossRef]
  18. A. S. Gouveia-Neto, A. S. L. Gomes, and J. R. Taylor, “Suppression and manipulation of the soliton self-frequency shift,” Opt. Lett. 14, 514–516 (1989). [CrossRef] [PubMed]
  19. D. Schadt and B. Jaskorzynska, “Suppression of the Raman self-frequency shift by cross-phase modulation,” J. Opt. Soc. Am. B 5, 2374–2379 (1988). [CrossRef]
  20. M. Ding and K. Kikuchi, “Analysis of soliton transmission in optical fibers with the soliton self-frequency shift being compensated by distributed frequency dependent gain,” Photon. Technol. Lett. 4, 497–500 (1992). [CrossRef]
  21. X. U. Wencheng, G. U. O. Qi, L. I. A. O. Changjun, and L. I. U. Songhao, “Suppression of Raman self-frequency shift of soliton propagation in single mode optical fiber,” Chin. Phys. Lett. 12, 113–115 (1995). [CrossRef]
  22. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003). [CrossRef] [PubMed]
  23. A. Bétourné, G. Bouwmans, Y. Quiquempois, M. Perrin, and M. Douay, “Improvements of solid-core photonic bandgap fibers by means of interstitial air holes,” Opt. Lett. 32, 1719–1721 (2007). [CrossRef] [PubMed]
  24. A. Bétourné, V. Pureur, G. Bouwmans, Y. Quiquempois, L. Bigot, M. Perrin, and M. Douay, “Solid photonic bandgap fiber assisted by an extra air-clad structure for low-loss operation around 1.5 μm,” Opt. Express 15, 316–324 (2007). [CrossRef] [PubMed]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  26. E. A. Golovchenko, E. M. Menyuk, A. M. Prokhorov, and V. N. Serkin, “Decay of optical solitons,” JETP Lett. 42, 87–91 (1985).
  27. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE J. Quantum Electron. 23, 510–524 (1987). [CrossRef]
  28. P. Beaud, W. Hodel, B. Zysset, and H. P. Weber, “Ultrashort pulse propagation, pulse breakup and fundamental soliton formation in a single-mode optical fiber,” IEEE J. Quantum Electron. 23, 1938–1946 (1987). [CrossRef]
  29. J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15, 16110–16123 (2007). [CrossRef] [PubMed]
  30. J. C. Travers, M. H. Frosz, and J. M. Dudley, “Nonlinear fibre optics overview,” in Supercontinuum Generation in Optical Fibers, J.M.Dudley and J.R.Taylor, eds. (Cambridge University Press, 2010), Chap. 3. [CrossRef]
  31. A. C. Judge, S. A. Dekker, R. Pant, C. Martijn de Sterke, and B. J. Eggleton, “Soliton self-frequency shift performance in As2S3 waveguides,” Opt. Express 18, 14960–14968 (2010). [CrossRef] [PubMed]
  32. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18, 14778–14787 (2010). [CrossRef] [PubMed]
  33. D. Hollenbeck and C. D. Cantrell, “Multiple-vibrationnal-mode model for fiber-optic Raman gain spectrum and response function,” J. Opt. Soc. Am. B 19, 2886–2892 (2002). [CrossRef]
  34. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation and nonlinear pulse propagation in photonic crystal fiber: influence of the frequency-dependent effective mode area,” Appl. Phys. B 81, 337–342 (2005). [CrossRef]
  35. A. A. Voronin and A. M. Zheltikov, “Soliton self-frequency shift decelerated by self-steepening,” Opt. Lett. 33, 1723–1725 (2008). [CrossRef] [PubMed]
  36. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mgi, R. Pant, and C. Martijn de Sterke, “Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,” J. Opt. Soc. Am. B 26, 2064–2071 (2009). [CrossRef]
  37. F. Biancalana, D. V. Skryabin, and A. V. Yulin, “Theory of the soliton self-frequency shift compensation by the resonant radiation in photonic crystal fibers,” Phys. Rev. E 70, 016615 (2004). [CrossRef]
  38. D. A. Sidorov-Biryukov, E. E. Serebryannikov, and A. M. Zheltikov, “Time-resolved coherent anti-Stokes Raman scattering with a femtosecond soliton output of a photonic crystal fiber,” Opt. Lett. 31, 2323–2325 (2006). [CrossRef] [PubMed]
  39. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28, 1123–1125 (2003). [CrossRef] [PubMed]
  40. M. Okuno, H. Kano, P. Leproux, V. Couderc, and H. Hamaguchi, “Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared,” Opt. Lett. 33, 923–925 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited