OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2350–2359

Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO 3

Christopher A. Werley, Qiang Wu, Kung-Hsuan Lin, C. Ryan Tait, August Dorn, and Keith A. Nelson  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2350-2359 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1153 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Four phase-sensitive imaging methods (Talbot, phase contrast, Sagnac, and polarization gating) used for detecting terahertz-frequency waves in structured lithium niobate slabs are compared analytically and experimentally. It is demonstrated that both phase contrast and a self-compensating polarization gating geometry can generate in-focus images of the sample and quantitatively measure the terahertz electric field. Of these two methods polarization gating has better signal-to-noise ratio and so is preferred for most situations, while phase contrast imaging has better spatial resolution and so is preferred for measurements involving fine structures or near-field effects.

© 2010 Optical Society of America

OCIS Codes
(320.7110) Ultrafast optics : Ultrafast nonlinear optics
(110.6795) Imaging systems : Terahertz imaging

ToC Category:
Imaging Systems

Original Manuscript: July 6, 2010
Manuscript Accepted: September 3, 2010
Published: October 18, 2010

Christopher A. Werley, Qiang Wu, Kung-Hsuan Lin, C. Ryan Tait, August Dorn, and Keith A. Nelson, "Comparison of phase-sensitive imaging techniques for studying terahertz waves in structured LiNbO3," J. Opt. Soc. Am. B 27, 2350-2359 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y.-S. Lee, Principles of Terahertz Science and Technology (Springer, 2009).
  2. T. Feurer, N. S. Stoyanov, D. W. Ward, J. C. Vaughan, E. R. Statz, and K. A. Nelson, “Terahertz polaritonics,” Annu. Rev. Mater. Res. 37, 317–350 (2007). [CrossRef]
  3. K.-H. Lin, C. A. Werley, and K. A. Nelson, “Generation of multicycle THz phonon-polariton waves in a planar waveguide by tilted optical pulse fronts,” Appl. Phys. Lett. 95, 103304 (2009). [CrossRef]
  4. T. Feurer, J. C. Vaughan, and K. A. Nelson, “Spatiotemporal coherent control of lattice vibrational waves,” Science 299, 374–377 (2003). [CrossRef] [PubMed]
  5. T. Hornung, K. L. Yeh, and K. A. Nelson, “Terahertz nonlinear response in lithium niobate,” in Ultrafast Phenomena XV, P.Corkum, D.M.Jonas, R.J. D.Miller, and A.M.Weiner, eds. (Springer, 2007). [CrossRef]
  6. N. S. Stoyanov, T. Feurer, D. W. Ward, and K. A. Nelson, “Integrated diffractive THz elements,” Appl. Phys. Lett. 82, 674–676 (2003). [CrossRef]
  7. N. S. Stoyanov, D. W. Ward, T. Feurer, and K. A. Nelson, “Terahertz polariton propagation in patterned materials,” Nature Mater. 1, 95–98 (2002). [CrossRef]
  8. E. R. Statz, D. W. Ward, and K. A. Nelson, “Phonon-polariton excitation in ferroelectric slab waveguides and photonic crystals,” in Ultrafast Phenomena XV, P.Corkum, D.M.Jonas, R.J. D.Miller, and A.M.Weiner, eds. (Springer, 2007), pp. 784–786. [CrossRef]
  9. P. Peier, S. Pilz, and T. Feurer, “Time-resolved coherent imaging of a THz multilayer response,” J. Opt. Soc. Am. B 26, 1649–1655 (2009). [CrossRef]
  10. D. W. Ward, E. R. Statz, and K. A. Nelson, “Fabrication of polaritonic structures in LiNbO3 and LiTaO3 using femtosecond laser machining,” Appl. Phys. A 86, 49–54 (2006). [CrossRef]
  11. R. M. Koehl, S. Adachi, and K. A. Nelson, “Direct visualization of collective wavepacket dynamics,” J. Phys. Chem. A 103, 10260–10267 (1999). [CrossRef]
  12. J. K. Wahlstrand and R. Merlin, “Cherenkov radiation emitted by ultrafast laser pulses and the generation of coherent polaritons,” Phys. Rev. B 68, 054301 (2003). [CrossRef]
  13. P. Peier, S. Pilz, F. Müller, K. A. Nelson, and T. Feurer, “Analysis of phase contrast imaging of terahertz phonon-polaritons,” J. Opt. Soc. Am. B 25, B70–B75 (2008). [CrossRef]
  14. Q. Wu, C. A. Werley, K.-H. Lin, A. Dorn, M. G. Bawendi, and K. A. Nelson, “Quantitative phase contrast imaging of THz electric fields in a dielectric waveguide,” Opt. Express 17, 9219–9225 (2009). [CrossRef] [PubMed]
  15. T. P. Dougherty, G. P. Wiederrecht, and K. A. Nelson, “Impulsive stimulated Raman scattering experiments in the polariton regime,” J. Opt. Soc. Am. 9, 2179–2189 (1992). [CrossRef]
  16. In reality the signal at the camera is a magnified inverted image of the phase pattern after the sample: P(−mx,−mz)∝Δϕ(x,z). This scaling and inversion of the field is not important for understanding the concepts in this paper, so the magnification factor will be omitted from equations in the text. Said in another way, the analysis assumes a non-inverting imaging system with a magnification of 1.
  17. H. F. Talbot, “Facts relating to optical science no. IV,” Philos. Mag. 9, 401–407 (1836).
  18. K. Patorski, “The self-imaging phenomenon and its applications,” in Progress in Optics, E.Wolf ed., (Elsevier, 1989), Vol. 27, pp. 1–108. [CrossRef]
  19. F. Zernike, “Phase contrast: a new method for the microscopic observation of transparent objects,” Physica (Amsterdam) 9, 686–698 (1942). [CrossRef]
  20. F. Zernike, “How I discovered phase contrast,” Science 121, 345–349 (1955). [CrossRef] [PubMed]
  21. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005), Chap. 8.
  22. G. Sagnac, “L’ether lumineux demontre par l’effet du vent relatif d’ether dans un interferometre en rotation uniforme,” Compt. Rend. 157, 708–710 (1913).
  23. M. C. Gabriel, N. A. Whitaker, Jr., C. W. Dirk, M. G. Kuzyk, and M. Thakur, “Measurement of ultrafast optical nonlinearities using a modified Sagnac interferometer,” Opt. Lett. 16, 1334–1336 (1991). [CrossRef] [PubMed]
  24. T. Tachizaki, T. Muroya, O. Matsudaa, Y. Sugawara, D. H. Hurley, and O. B. Wright, “Scanning ultrafast Sagnac interferometry for imaging two-dimensional surface wave propagation,” Rev. Sci. Instrum. 77, 043713 (2006). [CrossRef]
  25. B. I. Greene and R. C. Farrow, “Direct measurement of a subpicosecond birefringent response in CS2,” J. Chem. Phys. 77, 4779–4780 (1982). [CrossRef]
  26. S. Kinoshita, Y. Kai, M. Yamaguchi, and T. Yagi, “Direct comparison between ultrafast optical Kerr effect and high-resolution light scattering spectroscopy,” Phys. Rev. Lett. 75, 148–151 (1995). [CrossRef] [PubMed]
  27. D. Auston and M. Nuss, “Electrooptic generation and detection of femtosecond electrical transients,” IEEE J. Quantum Electron. 24, 184–197 (1988). [CrossRef]
  28. N. C. J. van der Valk, T. Wenckebach, and P. C. M. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004). [CrossRef]
  29. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “Two-dimensional electro-optic imaging of THz beams,” Appl. Phys. Lett. 69, 1026–1028 (1996). [CrossRef]
  30. Z. Jiang and X.-C. Zhang, “Terahertz Imaging via Electrooptic Effect,” IEEE Trans. Microwave Theory Tech. 47, 2644–2650 (1999). [CrossRef]
  31. A. Yariv and P. Yeh, Photonics, Optical Electronics in Modern Communications, 6th ed. (Oxford University Press, 2007).
  32. A. A. Goshtasby, 2-D and 3-D Image Registration (Wiley, 2005), Chap. 5.
  33. N. J. Cronin, Microwave and Optical Waveguides (Institute of Physics, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (1872 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited