OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2384–2392

Optically-pumped mid-IR phosphor using Tm 3 + -sensitized Pr 3 + -doped K Pb 2 Cl 5

Daniel Howse, Michael Logie, A. G. Bluiett, S. O’Connor, N. J. Condon, Joseph Ganem, and S. R. Bowman  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2384-2392 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002384


View Full Text Article

Enhanced HTML    Acrobat PDF (428 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Efficient energy transfer at room temperature from Tm 3 + to Pr 3 + has been demonstrated in co-doped K Pb 2 Cl 5 . Because of the low phonon energies in K Pb 2 Cl 5 , the energy transfer processes result in the conversion of 805 nm laser diode pump energy to a broad band of mid-IR radiation between 3500 to 5500 nm . Energy transfer pathways, rates, and quantum efficiencies are evaluated. Results show that the material is suitable as a phosphor for the 4 to 5 μ m spectral range that can be optically pumped with low-cost 0.8 μ m laser diodes.

© 2010 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(160.3380) Materials : Laser materials
(160.4760) Materials : Optical properties
(160.5690) Materials : Rare-earth-doped materials
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(300.6340) Spectroscopy : Spectroscopy, infrared

ToC Category:
Materials

History
Original Manuscript: June 22, 2010
Revised Manuscript: September 10, 2010
Manuscript Accepted: September 13, 2010
Published: October 22, 2010

Citation
Daniel Howse, Michael Logie, A. G. Bluiett, S. O'Connor, N. J. Condon, Joseph Ganem, and S. R. Bowman, "Optically-pumped mid-IR phosphor using Tm3+-sensitized Pr3+-doped KPb2Cl5," J. Opt. Soc. Am. B 27, 2384-2392 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2384


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, and R. F. Curl, “Application of quantum cascade lasers to trace gas analysis,” Appl. Phys. B 90, 165-176 (2008). [CrossRef]
  2. M. Aidaraliev, N. V. Zotova, S. A. Karandashev, B. A. Matveev, M. A. Remennyi, N. M. Stus', and G. N. Talalakin, “Optically pumped 'immersion-lens' infrared light emitting diodes based on narrow-gap III-V semiconductors,” Semiconductors 36, 828-831 (2002). [CrossRef]
  3. V. V. Fedorov, A. Galliana, I. Moskalev, and S. B. Mirov, “En route to electrically pumped broadly tunable middle infrared lasers based on transition metal doped II-VI semiconductors,” J. Lumin. 125, 184-195 (2007). [CrossRef]
  4. L. B. Shaw, B. Cole, D. T. Schaafsma, B. B. Harbison, J. S. Sanghera, and I. D. Aggarwal, “Rare-earth-doped selenide glass optical sources,” in Conference on Lasers and Electro-Optics, CLEO 98 Technical Digest (Optical Society of America, 1998), pp. 420-421.
  5. S. R. Bowman, B. J. Feldman, Joseph Ganem, and A. W. Kueny, “Infrared laser characteristics of praseodymium-doped lanthanum trichloride,” IEEE J. Quantum Electron. 30, 2925-2928 (1994). [CrossRef]
  6. S. R. Bowman, L. B. Shaw, B. J. Feldman, and Joseph Ganem, “A 7 μm praseodymium-based solid-state laser,” IEEE J. Quantum Electron. 32, 646-649 (1996). [CrossRef]
  7. K. Nitsch, M. Dusek, M. Nikl, K. Polak, and M. Rodova, “Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties,” Prog. Cryst. Growth Charact. 30, 1-22 (1995). [CrossRef]
  8. M. Voda, M. Al-Saleh, G. Lobera, R. Balda, and J. Fernadez, “Crystal growth of rare-earth-doped ternary potassium lead chloride single crystals by the Bridgman method,” Opt. Mater. (Amsterdam, Neth.) 25, 359-363 (2004). [CrossRef]
  9. U. N. Roy, Y. Cui, M. Guo, M. Groza, A. Burger, Gregory J. Wagner, Timothy J. Carrig, and S. A. Payne, “Growth and characterization of Er-doped KPb2Cl5 as laser host crystal,” J. Cryst. Growth 258, 331-336 (2003). [CrossRef]
  10. N. J. Condon, S. O'Connor, and S. R. Bowman, “Growth and characterization of single-crystal Er3+:KPb2Cl5 as a mid-infrared laser material,” J. Cryst. Growth 291, 472-478 (2006). [CrossRef]
  11. N. V. Lichkova, V. N. Zagorodnev, L. N. Butvina, A. G. Okhrimchuk, and A. V. Shestakov, “Preparation and optical properties of rare-earth-activated alkali metal lead chlorides,” Inorg. Mater. 42, 81-88 (2006). [CrossRef]
  12. E. Brown, U. Hömmerich, A. G. Bluiett, S. B. Trivedi, and J. M. Zavada, “Synthesis and spectroscopic properties of neodymium doped lead chloride,” J. Appl. Phys. 101, 113103:1-7 (2007). [CrossRef]
  13. L. Isaenko, A. Yelisseyev, A. Tkachuk, S. Ivanova, S. Vatnik, A. Merkulov, S. Payne, R. Page, and M. Nostrand, “New laser crystal based on KPb2Cl5 for IR region,” Mater. Sci. Eng., B 81, 188-190 (2001). [CrossRef]
  14. M. C. Nostrand, R. H. Page, S. A. Payne, W. F. Krupke, P. G. Schunemann, and L. I. Isaenko, “Room temperature CaGa2S4:Dy3+ laser action at 2.43 μm and 4.31 μm and KPb2Cl5 laser action at 2.43 μm,” in Advanced Solid State Lasers, Vol. 26 of OSA TOPS Proceeding Series (Optical Society of America, 1999), pp. 441-449.
  15. M. C. Nostrand, S. A. Payne, P. G. Schunemann, and L. I. Isaenko, “Laser demonstration of rare-earth ions in low-phonon chloride and sulfide crystals,” in Advanced Solid State Lasers, Vol. 34 of OSA TOPS Proceeding Series (Optical Society of America, 2000), 459-463.
  16. L. Isaenko, A. Tkachuk, S. Ivanova, S. Payne, R. Page, and M. Nostrand, “New low-phonon crystals based on rare earth doped double halogenides for multiwavelength diode-pumped solid-state laser,” Proc. SPIE 4900, 962-972 (2002). [CrossRef]
  17. S. R. Bowman, S. K. Searles, N. W. Jenkins, S. B. Qadri, E. F. Skelton, and Joseph Ganem, “Diode pumped room temperature 4.6 μm erbium laser,” in Advanced Solid State Lasers,Vol. 50 of OSA TOPS Proceeding Series (Optical Society of America, 2001), pp. 154-156.
  18. T. T. Basiev, Yu. V. Orlovskii, B. I. Galagan, M. E. Doroshenko, I. N. Vorob'ev, L. N. Dmitruk, A. G. Papashvili, V. N. Skvortsov, V. A. Konyushkin, K. K. Pukhov, G. A. Ermamakov, V. V. Osiko, A. M. Prokhorov, and S. Smith, “Evaluation of rare-earth doped crystals and glasses for 4-5 μm lasing,” Laser Phys. 12, 859-877 (2002).
  19. A. M. Tkachuk, S. E. Ivanova, L. I. Isaenko, A. P. Yelisseyev, M.-F. Joubert, Y. Guyot, and S. Payne, “Spectroscopic studies of erbium-doped potassium-lead double chloride crystals KPb2Cl5:Er3+:1. Optical spectra and relaxation of excited states of the erbium ion in potassium-lead double chloride crystals,” Opt. Spectrosc. 95, 722-740 (2003). [CrossRef]
  20. N. W. Jenkins, S. R. Bowman, S. O'Conner, S. K. Searles, and Joesph Ganem, “Spectroscopic characterization of Er-doped KPb2Cl5 laser crystals,” Opt. Mater. (Amsterdam, Neth.) 22, 311-320 (2003). [CrossRef]
  21. A. M. Tkachuk, S. E. Ivanova, M.-F. Joubert, Y. Guyot, L. I. Isaenko, and V. P. Gapontsev, “Upconversion processes in Er3+:KPb2Cl5 laser crystals,” J. Lumin. 125, 271-278 (2007). [CrossRef]
  22. N. W. Jenkins, S. R. Bowman, L. B. Shaw, and J. R. Lindle, “Spectroscopic analysis and laser modeling of neodymium-doped potassium lead chloride,” J. Lumin. 97, 127-134 (2002). [CrossRef]
  23. A. Mendioroz, R. Balda, M. Voda, M. Al-Saleh, and J. Fernadez, “Infrared to visible and ultraviolet upconversion processes in Nd3+-doped potassium lead chloride crystal,” Opt. Mater. (Amsterdam, Neth.) 95, 351-357 (2004). [CrossRef]
  24. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+− and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264-276 (2001). [CrossRef]
  25. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, I. A. Shestakova, N. V. Lichkova, V. N. Zagorodnev, and A. V. Shestakov, “Optical spectroscopy of the RbPb2Cl5:Dy3+ laser crystal and oscillation at 5.5 μm at room temperature,” J. Opt. Soc. Am. B 24, 2690-2695 (2007). [CrossRef]
  26. U. Hömmerich, Ei Ei Nyein, and S. B. Trivedi, “Crystal growth, upconversion, and infrared emission properties of Er3+-doped KPb2Br5,” J. Lumin. 113, 100-108 (2005). [CrossRef]
  27. P. Amedzake, E. Brown, U. Hommerich, S. B. Trivedi, and J. M. Zavada, “Crystal growth and spectroscopic characterization of Pr-doped KPb2Cl5 for mid-infrared laser applications,” J. Cryst. Growth 310, 2015-2019 (2008). [CrossRef]
  28. A. Ferrier, M. Velazquez, J.-L. Doualan, and R. Moncorge, “Mid-infrared luminescence properties and laser potentials of Pr3+ doped KPb2Cl5 and CsCdBr3,” J. Appl. Phys. 104, 123513:1-14 (2008). [CrossRef]
  29. A. G. Okhrimchuk, L. N. Butvina, E. M. Dianov, N. V. Lichkova, V. N. Zagorodnev, and A. V. Shestakov, “New laser transition in the RbPb2Cl5:Pr3+ crystal in the 2.3-2.5 μm wavelength range,” Quantum Electron. 36, 41-44 (2006). [CrossRef]
  30. P. Y. Tigreat, J. L. Doualan, C. Budasca, and R. Moncorge, “Energy transfer processes in (Yb3+,Dy3+) and (Tm3+,Dy3+) co-doped LiYF4 and KY3F10 single crystals,” J. Lumin. 94-95, 23-27 (2001). [CrossRef]
  31. A. Braud, S. Girard, J. L. Doualan, and R. Moncorge, “Spectroscopy and fluorescence dynamics of (Tm3+,Tb3+) and (Tm3+,Eu3+) doped LiYF4 single crystals for 1.5-μm laser operation,” IEEE J. Quantum Electron. 34, 2246-2255 (1998). [CrossRef]
  32. G. Özen and B. Di Bartolo, “The microscopic interaction parameter for Tm-to-Ho resonant energy transfer in LiYF4,” J. Phys. 13, 195-202 (2001).
  33. J. Ganem, J. Crawford, P. Schmidt, N. W. Jenkins, and S. R. Bowman, “Thulium cross-relaxation in a low phonon energy crystalline host,” Phys. Rev. B 66, 245101:1-14 (2002). [CrossRef]
  34. K. M. Murdoch and N. J. Cockroft, “Energy-transfer processes between Tm3+ and Pr3+ ions in CsCdBr3,” Phys. Rev. B 54, 4589-4603 (1996). [CrossRef]
  35. A. G. Bluiett, N. J. Condon, S. O'Connor, S. R. Bowman, Michael Logie, and Joseph Ganem, “Thulium-sensitized neodymium in KPb2Cl5 for mid-infrared laser development,” J. Opt. Soc. Am. B 22, 2250-2256 (2005). [CrossRef]
  36. A. Okhrimchuk, L. Butvina, E. Dianov, N. Lichkova, and V. Zavgorodnev, “Sensitization of MIR Tb3+ luminescence by Tm3+ ions in CsCdBr3 and KPb2Cl5 crystals,” in Advanced Solid-State Photonics, Vol. 83 of OSA Trends in Optics and Photonics (Optical Society of America, 2003), paper 303.
  37. D. S. Sumida and T. Y. Fan, “Effects of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19, 1343-1345 (1994). [CrossRef] [PubMed]
  38. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836-850 (1953). [CrossRef]
  39. T. Förster, “Experimentelle und theoretische Untersuchung des zwischenmolecularen Uebergangs von Electronenanregungsenergie,” Z. Naturforsch. 4a, 321-327 (1949).
  40. A. I. Burshtein, “Hopping mechanism of energy transfer,” Sov. Phys. JETP 35, 882-885 (1972).
  41. S. A. Payne, L. K. Smith, W. L. Kway, J. B. Tassano, and W. F. Krupke, “The mechanism of Tm-->Ho energy transfer in LiYF4,” J. Phys. Condens. Matter 4, 8525-8542 (1992). [CrossRef]
  42. V. A. French, R. R. Petrin, R. C. Powell, and M. Kokta, “Energy-transfer processes in Y3Al5O12:Tm,Ho,” Phys. Rev. B 46, 8018-8026 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited