OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2405–2409

Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes

Renlong Zhou, Hua Lu, Xueming Liu, Yongkang Gong, and Dong Mao  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2405-2409 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002405


View Full Text Article

Enhanced HTML    Acrobat PDF (319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Second-harmonic generation (SHG) through a proposed thin gold film with a periodic array of subwavelength nanoholes is numerically investigated. By using a recently developed microscopic classical theory and a full-vectorial three-dimensional finite-difference time-domain method, we demonstrate that the mirror symmetry of nanoholes in one direction restricts the polarization state of second-harmonic emission in the same direction. Numerical results show that the second-order nonlinear susceptibility χ ( 2 ) y y y dominates in the process of SHG when the nanoholes possess mirror symmetry in the x-axis direction. It is also found that the surface plasmon resonance can result in the enhancement of SHG from metallic nanoholes.

© 2010 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(240.6680) Optics at surfaces : Surface plasmons
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 4, 2010
Revised Manuscript: September 10, 2010
Manuscript Accepted: September 18, 2010
Published: October 22, 2010

Citation
Renlong Zhou, Hua Lu, Xueming Liu, Yongkang Gong, and Dong Mao, "Second-harmonic generation from a periodic array of noncentrosymmetric nanoholes," J. Opt. Soc. Am. B 27, 2405-2409 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2405


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. Brown, R. E. Parks, and A. M. Sleeper, “Nonlinear optical reflection from a metallic boundary,” Phys. Rev. Lett. 14, 1029–1031 (1965). [CrossRef]
  2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961). [CrossRef]
  3. J. E. Sipe, D. J. Moss, and H. M. van Driel, “Phenomenological theory of optical second- and third-harmonic generation from cubic centerosymmetric crystals,” Phys. Rev. B 35, 1129–1141 (1987). [CrossRef]
  4. C. K. Chen, A. R. B. de Castro, and Y. R. Shen, “Surface-enhancement of second-harmonic generation,” Phys. Rev. Lett. 46, 145–148 (1981). [CrossRef]
  5. C. K. Chen, T. F. Heinz, D. Ricard, and Y. R. Shen, “Surface-enhancement of second-harmonic generation and Raman scattering,” Phys. Rev. B 27, 1965–1979 (1983). [CrossRef]
  6. J. E. Sipe and G. I. Stegeman, in Surface Polaritons: Electro-magnetic Waves at Surfaces and Interfaces, V.M.Agranovich and D.L.Mills, eds. (North-Holland, 1982).
  7. I. Smolyaninov, A. Zayats, and C. Davis, “Near-field second harmonic generation from a rough metal surface,” Phys. Rev. B 56, 9290–9293 (1997). [CrossRef]
  8. A. V. Zayats, I. Smolyaninov, and C. C. Davis, “Near-field microscopy of second-harmonic generation,” Proc. SPIE 3732, 81–92 (1999). [CrossRef]
  9. A. V. Zayats, I. I. Smolyaninov, and C. C. Davis, “Observation of localized plasmonic excitations in thin metal films with near-field second-harmonic microscopy,” Opt. Commun. 169, 93–96 (1999). [CrossRef]
  10. I. I. Smolyaninov, C. H. Lee, C. C. Davis, and S. Rudin, “Near-field imaging of surface-enhanced second harmonic generation,” J. Microsc. 194, 532–536 (1999). [CrossRef]
  11. S. S. Jha, “Theory of optical harmonic generation at a metal surface,” Phys. Rev. 140, A2020–A2030 (1965). [CrossRef]
  12. T. F. Heinz, in Nonlinear Surface Electromagnetic Phenomena, H.Ponath and G.Stegeman, eds. (Elsevier, 1991).
  13. J. A. Maytorena, W. L. Mochán, and B. S. Mendoza, “Hydrodynamic model for sum and difference frequency generation at metal surfaces,” Phys. Rev. B 57, 2580–2585 (1998). [CrossRef]
  14. A. V. Zayats and I. I. Smolyaninov, “Near-field second-harmonic generation,” Philos. Trans. R. Soc. London, Ser. A 362, 843–860 (2004). [CrossRef]
  15. O. A. Aktsipetrov, T. V. Murzina, E. M. Kim, R. V. Kapra, A. A. Fedyanin, M. Inoue, A. F. Kravets, S. V. Kuznetsova, M. V. Ivanchenko, and V. G. Lifshits, “Magnetization-induced second- and third-harmonic generation in magnetic thin films and nanoparticles,” J. Opt. Soc. Am. B 22, 138–147 (2005). [CrossRef]
  16. W. L. Schaich, “Second harmonic generation by periodically-structured metal surfaces,” Phys. Rev. B 78, 195416 (2008). [CrossRef]
  17. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28, 423–425 (2003). [CrossRef] [PubMed]
  18. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88, 261104 (2006). [CrossRef]
  19. S. Kujala, B. K. Canfield, M. Kauranen, Y. Svirko, and J. Tu-runen, “Multipole interference in the second-harmonic optical radiation from gold nanoparticles,” Phys. Rev. Lett. 98, 167403 (2007). [CrossRef] [PubMed]
  20. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in noncentrosymmetric nanodimers,” Nano Lett. 7, 1251–1255 (2007). [CrossRef] [PubMed]
  21. M. R. Zavelani-Rossi, M. Celebrano, P. Biagioni, D. Polli, M. Finazzi, L. Duò, G. Cerullo, M. Labardi, M. Allegrini, J. Grand, and P. M. Adam, “Near-field second-harmonic generation in single gold nanoparticles,” Appl. Phys. Lett. 92, 093119 (2008). [CrossRef]
  22. Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, and J. V. Moloney, “Classical theory for second-harmonic generation from metallic nanoparticles,” Phys. Rev. B 79, 235109 (2009). [CrossRef]
  23. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, and M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33, 1975–1977 (2008). [CrossRef] [PubMed]
  24. J. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett. 97, 146102 (2006). [CrossRef] [PubMed]
  25. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett. 90, 013903 (2003). [CrossRef] [PubMed]
  26. C. Hubert, L. Billot, P. M. Adam, R. Bachelot, P. Royer, J. Grand, D. Gindre, K. D. Dorkenoo, and A. Fort, “Role of surface plasmon in second harmonic generation from gold nanorods,” Appl. Phys. Lett. 90, 181105 (2007). [CrossRef]
  27. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005). [CrossRef]
  28. M. Airola, Y. Liu, and S. Blair, “Second-harmonic generation from an array of sub-wavelength metal apertures,” J. Opt. A, Pure Appl. Opt. 7, S118–S123 (2005). [CrossRef]
  29. M. W. Klein, C. Enkrich, M. Wegener, and S. Linden, “Second-harmonic generation from magnetic metamaterials,” Science 313, 502–504 (2006). [CrossRef] [PubMed]
  30. J. Nappa, G. Revillod, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Electric dipole origin of the second harmonic generation of small metallic particles,” Phys. Rev. B 71, 165407 (2005). [CrossRef]
  31. G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P. F. Brevet, “Multipolar second-harmonic generation in noble metal nanoparticles,” J. Opt. Soc. Am. B 25, 955–960 (2008). [CrossRef]
  32. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  33. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92, 183901 (2004). [CrossRef] [PubMed]
  34. L. Salomon, F. Grillot, A. V. Zayats, and F. de Fornel, “Near-field distribution of optical transmission of periodic subwavelength holes in a metal film,” Phys. Rev. Lett. 86, 1110–1113 (2001). [CrossRef] [PubMed]
  35. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]
  36. A. Naweed, F. Baumann, W. A. Bailey, Jr., A. S. Karakashian, and W. D. Goodhue, “Evidence for radiative damping in surface-plasmon-mediated light transmission through perforated conducting films,” J. Opt. Soc. Am. B 20, 2534–2538 (2003). [CrossRef]
  37. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited