OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2428–2432

Study of grating performance for quantum well photodetectors

Jian Wang, Xiaoshuang Chen, Zhifeng Li, and Wei Lu  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2428-2432 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (3981 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The performance of reflective grating plays a key role in quantum well infrared focal plane arrays due to the selection rules of inter-subband transition. In this paper, the reflective properties of metal grating have been studied by the finite-difference time-domain methods. Not only are the optimal grating parameters found to be different from the suggested values, but also a new choice for grating design has been found due to the exciting of surface wave. In addition, cavity modes can be formed when the dielectric thickness is finite. The grating performance is also greatly affected by the cavity modes. The presented results may have some significance for experimental design.

© 2010 Optical Society of America

OCIS Codes
(040.3060) Detectors : Infrared
(040.4200) Detectors : Multiple quantum well
(040.5160) Detectors : Photodetectors
(050.1950) Diffraction and gratings : Diffraction gratings
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: July 22, 2010
Revised Manuscript: September 7, 2010
Manuscript Accepted: September 18, 2010
Published: October 27, 2010

Virtual Issues
Vol. 6, Iss. 1 Virtual Journal for Biomedical Optics

Jian Wang, Xiaoshuang Chen, Zhifeng Li, and Wei Lu, "Study of grating performance for quantum well photodetectors," J. Opt. Soc. Am. B 27, 2428-2432 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Schneider and H. C. Liu, Quantum Well Infrared Photodetectors Physics and Applications (Springer, 2007).
  2. J. S. Smith, L. C. Chiu, S. Margalit, A. Yariv, and A. Y. Cho, “A new infrared detector using electron emission from multiple quantum wells,” J. Vac. Sci. Technol. B 1, 376–378 (1983). [CrossRef]
  3. N. Li, H.-l. Zhen, W.-p. Wang, J. Wang, X.-s. Chen, Z. Li, W.-x. Wang, H. Chen, F.-q. Liu, and L. Wei, “Quantum structure optimization for infrared detection,” Proc. SPIE 7383, 738306 (2009). [CrossRef]
  4. J. Y. Andersson and G. Landgren, “Intersubband transitions in single AlGaAs/GaAs quantum wells studied by Fourier transform infrared spectroscopy,” J. Appl. Phys. 64, 4123–4126 (1988). [CrossRef]
  5. Y. C. Wang and S. S. Li, “A planar two-dimensional circular aperture metal grating coupler for quantum well infrared photodetectors,” J. Appl. Phys. 75, 8168–8174 (1994). [CrossRef]
  6. C. J. Chen, K. K. Choi, M. Z. Tidrow, and D. C. Tsui, “Corrugated quantum well infrared photodetectors for normal incident light coupling,” Appl. Phys. Lett. 68, 1446–1448 (1996). [CrossRef]
  7. G. Hasnain, B. F. Levine, C. G. Bethea, R. A. Logan, J. Walker, and R. J. Malik, “GaAs/AlGaAs multiquantum well infrared detector arrays using etched gratings,” Appl. Phys. Lett. 54, 2515–2527 (1989). [CrossRef]
  8. C. P. Lee, K. H. Chang, and K. L. Tsai, “Quantum well infrared photodetectors with bi-periodic grating couplers,” Appl. Phys. Lett. 61, 2437–2439 (1992). [CrossRef]
  9. G. Sarusi, B. F. Levine, S. J. Pearton, K. M. S. Bandara, and R. E. Leibenguth, “Improved performance of quantum well infrared photodetectors using random scattering optical coupling,” Appl. Phys. Lett. 64, 960–962 (1994). [CrossRef]
  10. K. K. Choi, The Physics of Quantum Well Infrared Photodetectors (World Scientific, 1997). [CrossRef]
  11. D. Lepage and J. J. Dubowskia, “Surface plasmon assisted photoluminescence in GaAsCAlGaAs quantum well microstructures,” Appl. Phys. Lett. 91, 163106 (2007). [CrossRef]
  12. K.-C. Shen, C.-Y. Chen, C.-F. Huang, J.-Y. Wang, Y.-C. Lu, Y.-W. Kiang, C. C. Yang, and Y.-J. Yang, “Polarization dependent coupling of surface plasmon on a one-dimensional Ag grating with an InGaN/GaN dual-quantum-well structure,” Appl. Phys. Lett. 92, 013108 (2008). [CrossRef]
  13. J. B. Khurgin and G. Sun, “Enhancement of light absorption in a quantum well by surface plasmon polariton,” Appl. Phys. Lett. 94, 191106 (2009). [CrossRef]
  14. J. Wang, X. Chen, and W. Lu, “High-efficiency surface plasmon polariton source,” J. Opt. Soc. Am. B 26, B139–B142 (2009). [CrossRef]
  15. A. R. Forouhi and I. Bloomer, “Optical properties of crystalline semiconductors and dielectrics,” Phys. Rev. B 38, 1865–1874 (1988). [CrossRef]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  17. A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 44, 2332–2337 (2005). [CrossRef]
  18. H. Schneider, C. Schönbein, M. Walther, P. Koidl, and G. Weimann, “Influence of optical interference on quantum well infrared photodetectors in a 45 waveguide geometry,” Appl. Phys. Lett. 74, 16–18 (1999). [CrossRef]
  19. H. FujiwaraJ. Koh, P. I. Rovira, and R. W. Collins, “Assessment of effective-medium theories in the analysis of nucleation and microscopic surface roughness evolution for semiconductor thin films,” Phys. Rev. B 61, 10832–10844 (2000). [CrossRef]
  20. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445, 39–46 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited