OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2433–2437

Transmission enhancement of slow light by a subwavelength plasmon-dielectric system

Bin Tang, Lei Dai, and Chun Jiang  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. 2433-2437 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002433


View Full Text Article

Enhanced HTML    Acrobat PDF (314 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical and numerical analysis of a subwavelength plasmon-dielectric system that incorporates a periodic metal grating deposited on a dielectric waveguide and supports transmission enhancement of slow light at infrared wavelength for the s polarization. We find that a Fano resonance mechanism to produce this novel phenomenon is based on the interaction of the discrete waveguide-plasmon hybridization modes with the incident photon continuum, which is different from the popular cases with surface plasmonic modes excited by p polarized incident light. The further analysis of the Fano effect indicates that group velocity of slow light and transparent efficiency can be controlled in a large range by the coupling strength, and a more than 20-fold transmission enhancement corresponding to the group velocity of 0.005 c is obtained as compared to the case without the dielectric waveguide substrate.

© 2010 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: August 4, 2010
Manuscript Accepted: September 18, 2010
Published: October 27, 2010

Citation
Bin Tang, Lei Dai, and Chun Jiang, "Transmission enhancement of slow light by a subwavelength plasmon-dielectric system," J. Opt. Soc. Am. B 27, 2433-2437 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-2433


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  2. J. Porto, F. Garcia-Vidal, and J. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  3. M.-W. Kim, T.-T. Kim, J.-E. Kim, and H. Y. Park, “Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films,” Opt. Express 17, 12315–12322 (2009). [CrossRef] [PubMed]
  4. J. W. Lee, T. H. Park, P. Nordlander, and D. M. Mittleman, “Terahertz transmission properties of an individual slit in a thin metallic plate,” Opt. Express 17, 12660–12667 (2009). [CrossRef] [PubMed]
  5. M. Seo, H. Park, S. Koo, D. Park, J. Kang, O. Suwal, S. Choi, P. Planken, G. Park, and N. Park, “Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit,” Nat. Photonics 3, 152–156 (2009). [CrossRef]
  6. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett. 88, 057403 (2002). [CrossRef] [PubMed]
  7. R. Biswas, S. Neginhal, C. G. Ding, I. Puscasu, and E. Johnson, “Mechanisms underlying extraordinary transmission enhancement in subwavelength hole arrays,” J. Opt. Soc. Am. B 24, 2589–2596 (2007). [CrossRef]
  8. H. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef] [PubMed]
  9. E. Moreno, L. Martin-Moreno, and F. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt. 8, S94–S97 (2006). [CrossRef]
  10. S. Xiao, L. Peng, and N. Mortensen, “Enhanced transmission of transverse electric waves through periodic arrays of structured subwavelength apertures,” Opt. Express 18, 6040–6047 (2010). [CrossRef] [PubMed]
  11. M. Guillaumée, A. Y. Nikitin, M. J. K. Klein, L. A. Dunbar, V. Spassov, R. Eckert, L. Martín-Moreno, F. J. García-Vidal, and R. P. Stanley, “Observation of enhanced transmission for s-polarized light through a subwavelength slit,” Opt. Express 18, 9722–9727 (2010). [CrossRef] [PubMed]
  12. P. Berini, “Long-range surface plasmon-polaritons,” Adv. Opt. Photon. 1, 484–588 (2009). [CrossRef]
  13. F. Garcia-Vidal, L. Martin-Moreno, T. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82, 729–787 (2010). [CrossRef]
  14. S. Maier, Plasmonics: Fundamentals and Applications (Springer Verlag, 2007).
  15. T. Krauss, “Why do we need slow light?” Nat. Photonics 2, 448–450 (2008). [CrossRef]
  16. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94, 153902 (2005). [CrossRef] [PubMed]
  17. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, “Electromagnetically induced transparency: Propagation dynamics,” Phys. Rev. Lett. 74, 2447 (1995). [CrossRef] [PubMed]
  18. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  19. J. E. Heebner and R. W. Boyd, “SLOW AND STOPPED LIGHT ‘Slow’ and ‘fast’ light in resonator-coupled waveguides,” J. Mod. Opt. 49, 2629–2636 (2002). [CrossRef]
  20. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96, 123901 (2006). [CrossRef] [PubMed]
  21. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2, 465–473 (2008). [CrossRef]
  22. S. A. Maier, S. R. Andrews, L. Martín-Moreno, and F. J. García-Vidal, “Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires,” Phys. Rev. Lett. 97, 176805 (2006). [CrossRef] [PubMed]
  23. E. Di Gennaro, P. V. Parimi, W. T. Lu, S. Sridhar, J. S. Derov, and B. Turchinetz, “Slow microwaves in left-handed materials,” Phys. Rev. B 72, 033110 (2005). [CrossRef]
  24. Z. Ruan and M. Qiu, “Slow electromagnetic wave guided in subwavelength region along one-dimensional periodically structured metal surface,” Appl. Phys. Lett. 90, 201906 (2007). [CrossRef]
  25. K. Tsakmakidis, A. Boardman, and O. Hess, “‘Trapped rainbow’ storage of light in metamaterials,” Nature 450, 397–401 (2007). [CrossRef] [PubMed]
  26. W. Lu, S. Savo, B. Casse, and S. Sridhar, “Slow microwave waveguide made of negative permeability metamaterials,” Microwave Opt. Technol. Lett. 51, 2705–2709 (2009). [CrossRef]
  27. N. Papasimakis and N. I. Zheludev, “Metamaterial-induced transparency: Sharp Fano resonances and slow light,” Opt. Photonics News 20, 22–27 (2009). [CrossRef]
  28. T. Zentgraf, S. Zhang, R. Oulton, and X. Zhang, “Ultranarrow coupling-induced transparency bands in hybrid plasmonic systems,” Phys. Rev. B 80, 195415 (2009). [CrossRef]
  29. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008). [CrossRef] [PubMed]
  30. N. Papasimakis, V. A. Fedotov, N. I. Zheludev, and S. L. Prosvirnin, “Metamaterial analog of electromagnetically induced transparency,” Phys. Rev. Lett. 101, 253903 (2008). [CrossRef] [PubMed]
  31. N. Liu, L. Langguth, T. Weiss, J. Kastel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nature Mater. 8, 758–762 (2009). [CrossRef]
  32. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, “Coupling between a dark and a bright eigenmode in a terahertz metamaterial,” Phys. Rev. B 79, 085111 (2009). [CrossRef]
  33. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Planar designs for electromagnetically induced transparency in metamaterials,” Opt. Express 17, 5595–5605 (2009). [CrossRef] [PubMed]
  34. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-loss metamaterials based on classical electromagnetically induced transparency,” Phys. Rev. Lett. 102, 053901 (2009). [CrossRef] [PubMed]
  35. V. Yannopapas, E. Paspalakis, and N. V. Vitanov, “Electromagnetically induced transparency and slow light in an array of metallic nanoparticles,” Phys. Rev. B 80, 035104 (2009). [CrossRef]
  36. Q. Bai, C. Liu, J. Chen, C. Cheng, M. Kang, and H. Wang, “Tunable slow light in semiconductor metamaterial in a broad terahertz regime,” J. Appl. Phys. 107, 093104 (2010). [CrossRef]
  37. A. Dogariu, T. Thio, L. Wang, T. Ebbesen, and H. Lezec, “Delay in light transmission through small apertures,” Opt. Lett. 26, 450–452 (2001). [CrossRef]
  38. A. Dechant and A. Elezzabi, “Femtosecond optical pulse propagation in subwavelength metallic slits,” Appl. Phys. Lett. 84, 4678–4680 (2004). [CrossRef]
  39. J. Prangsma, D. Oosten, R. Moerland, and L. Kuipers, “Increase of group delay and nonlinear effects with hole shape in subwavelength hole arrays,” New J. Phys. 12, 013005 (2010). [CrossRef]
  40. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  41. L. Dai and C. Jiang, “Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating,” Opt. Express 17, 20502–20514 (2009). [CrossRef] [PubMed]
  42. A. Christ, S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, “Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab,” Phys. Rev. Lett. 91, 183901 (2003). [CrossRef] [PubMed]
  43. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited