OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: 2438–2442

Determination of the nonlinear refractive index in multiphoton absorbers by Z-scan measurements

Bing Gu, Kai Lou, Jing Chen, Hui-Tian Wang, and Wei Ji  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. 2438-2442 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report the theoretical investigation of the Z-scan technique for characterizing the instantaneous Kerr nonlinearity of an optically thin multiphoton absorber. Based on the Huygens–Fresnel diffraction integral method, we study the characteristics of the closed-aperture Z-scan traces. Most importantly, we present the analytical formulae of the closed-aperture Z-scan transmittance with simultaneous Kerr effect and n-photon absorption. Besides, we demonstrate that the determination of the third-order nonlinear refractive index in multiphoton absorbers becomes timesaving yet unambiguously by the presented theory.

© 2010 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4180) Nonlinear optics : Multiphoton processes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in

ToC Category:
Nonlinear Optics

Original Manuscript: July 2, 2010
Revised Manuscript: September 22, 2010
Manuscript Accepted: September 29, 2010
Published: October 27, 2010

Bing Gu, Kai Lou, Jing Chen, Hui-Tian Wang, and Wei Ji, "Determination of the nonlinear refractive index in multiphoton absorbers by Z-scan measurements," J. Opt. Soc. Am. B 27, 2438-2442 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. L. Sutherland with contributions by D. G. McLean and S. Kikpatrick, Handbook of Nonlinear Optics, second ed. (Marcel Dekker, 2003). [CrossRef]
  2. R. Y. Chen, M. D. B. Charlton, and P. G. Lagoudakis, “Chi 3 dispersion in planar tantalum pentoxide waveguides in the telecommunications window,” Opt. Lett. 34, 1135–1137 (2009). [CrossRef] [PubMed]
  3. A. Ciattoni, B. Crosignani, P. D. Porto, and A. Yariv, “Azimuthally polarized spatial dark solitons: exact solutions of Maxwell’s equations in a Kerr medium,” Phys. Rev. Lett. 94, 073902 (2005). [CrossRef] [PubMed]
  4. F. Yoshino, S. Polyakov, M. Liu, and G. Stegeman, “Observation of three-photon enhanced four-photon absorption,” Phys. Rev. Lett. 91, 063902 (2003). [CrossRef] [PubMed]
  5. S. Polyakov, F. Yoshino, and G. Stegeman, “Interplay between self-focusing and high-order multiphoton absorption,” J. Opt. Soc. Am. B 18, 1891–1895 (2001). [CrossRef]
  6. N. Venkatram, R. Sathyavathi, and D. Narayana Rao, “Size dependent multiphoton absorption and refraction of CdSe nanoparticles,” Opt. Express 15, 12258–12263 (2007). [CrossRef] [PubMed]
  7. M. Chattopadhyay, P. Kumbhakar, R. Sarkar, and A. K. Mitra, “Enhanced three-photon absorption and nonlinear refraction in ZnS and Mn2+ doped ZnS quantum dots,” Appl. Phys. Lett. 95, 163115 (2009). [CrossRef]
  8. J. N. Badu Reddy, V. B. Naik, S. Elizabeth, H. L. Bhat, N. Venkatram, and D. Narayana Rao, “Multiphoton absorption in CsLiB6O10 with femtosecond infrared laser pulses,” J. Appl. Phys. 104, 053108 (2008). [CrossRef]
  9. M. Chattopadhyay, P. Kumbhakar, C. S. Tiwary, A. K. Mitra, U. Chatterjee, and T. Kobayashi, “Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots,” Opt. Lett. 34, 3644–3646 (2009). [CrossRef] [PubMed]
  10. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990). [CrossRef]
  11. P. B. Chapple, J. Staromlynska, J. A. Hermann, and T. J. Mckay, “Single-beam Z-scan: measurement techniques and analysis,” J. Nonlinear Opt. Phys. Mater. 6, 251–293 (1997). [CrossRef]
  12. G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis, and V. Giannetas, “Z-scan analysis for high order nonlinearities through Gaussian decomposition,” Opt. Commun. 225, 253–268 (2003). [CrossRef]
  13. B. Gu, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “Theory of Gaussian beam Z scan with simultaneous third- and fifth-order nonlinear refraction based on a Gaussian decomposition method,” J. Opt. Soc. Am. B 22, 2651–2659 (2005). [CrossRef]
  14. R. A. Ganeev, “Nonlinear refraction and nonlinear absorption of various media,” J. Opt. A, Pure Appl. Opt. 7, 717–733 (2005). [CrossRef]
  15. Z. B. Liu, X. Q. Yan, J. G. Tian, W. Y. Zhou, and W. P. Zang, “Nonlinear ellipse rotation modified Z-scan measurements of third-order nonlinear susceptibility tensor,” Opt. Express 15, 13351–13359 (2007). [CrossRef] [PubMed]
  16. B. Gu, H. T. Wang, and W. Ji, “Z-scan technique for investigation of the noninstantaneous optical Kerr nonlinearity,” Opt. Lett. 34, 2769–2771 (2009). [CrossRef] [PubMed]
  17. G. Boudebs and K. Fedus, “Linear optical characterization of transparent thin films by the Z-scan technique,” Appl. Opt. 48, 4124–4129 (2009). [CrossRef] [PubMed]
  18. G. Shi, C. He, Y. Li, R. Zou, X. Zhang, Y. Wang, K. Yang, Y. L. Song, and C. H. Wang, “Excited-state nonlinearity measurements of ZnPcBr4∕DMSO,” J. Opt. Soc. Am. B 26, 754–761 (2009). [CrossRef]
  19. D. I. Kovsh, S. Yang, D. J. Hagan, and E. W. Van Stryland, “Nonlinear optical beam propagation for optical limiting,” Appl. Opt. 24, 5168–5180 (1999). [CrossRef]
  20. D. I. Kovsh, D. J. Hagan, and E. W. Van Stryland, “Numerical modeling of themal refraction in liquids in the transient regime,” Opt. Express 4, 315–327 (1999). [CrossRef] [PubMed]
  21. D. S. Corrêa, L. De Boni, L. Misoguti, I. Cohanoschi, F. E. Hernandez, and C. R. Mendonça, “Z-scan theoretical analysis for three-, four- and five-photon absorption,” Opt. Commun. 277, 440–445 (2007). [CrossRef]
  22. B. Gu, J. Wang, J. Chen, Y. X. Fan, J. P. Ding, and H. T. Wang, “Z-scan theory for material with two- and three-photon absorption,” Opt. Express 13, 9230–9234 (2005). [CrossRef] [PubMed]
  23. B. Gu, X. Q. Huang, S. Q. Tan, M. Wang, and W. Ji, “Z-scan analytical theories for characterizing multiphoton absorbers,” Appl. Phys. B: Lasers Opt. 95, 375–381 (2009). [CrossRef]
  24. S. Polyakov, F. Yoshino, M. Liu, and G. Stegeman, “Nonlinear refraction and multiphoton absorption in polydiacetylenes from 1200to2200 nm,” Phys. Rev. B 69, 115421 (2004). [CrossRef]
  25. J. He, Y. L. Qu, H. P. Li, J. Mi, and W. Ji, “Three-photon absorption in ZnO and ZnS crystals,” Opt. Express 13, 9235–9247 (2005). [CrossRef] [PubMed]
  26. W. C. Hurlbut, Y. S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668–670 (2007). [CrossRef] [PubMed]
  27. M. Chattopadhyay, P. Kumbhakar, C. S. Tiwary, A. K. Mitra, and U. Chatterjee, “Multiphoton absorption and refraction in Mn2+ doped ZnS quantum dots,” J. Appl. Phys. 105, 024313 (2009). [CrossRef]
  28. D. Weaire, B. S. Wherrett, D. A. B. Miller, and S. D. Smith, “Effect of low-power nonlinear refraction on laser-beam propagation in InSb,” Opt. Lett. 4, 331–333 (1979). [CrossRef] [PubMed]
  29. B. Gu, W. Ji, and X. Q. Huang, “Analytical expression for femtosecond-pulsed Z scans on instantaneous nonlinearity,” Appl. Opt. 47, 1187–1192 (2008). [CrossRef] [PubMed]
  30. M. Yin, H. P. Li, S. H. Tang, and W. Ji, “Determination of nonlinear absorption and refraction by single Z-scan method,” Appl. Phys. B: Lasers Opt. 70, 587–591 (2000). [CrossRef]
  31. B. Gu, W. Ji, H. Z. Yang, and H. T. Wang, “Theoretical and experimental studies of three-photon-induced excited-state absorption,” Appl. Phys. Lett. 96, 081104 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited