OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: B1–B8

Photonic crystal lasers—ultimate nanolasers and broad-area coherent lasers [Invited]

Susumu Noda  »View Author Affiliations


JOSA B, Vol. 27, Issue 11, pp. B1-B8 (2010)
http://dx.doi.org/10.1364/JOSAB.27.0000B1


View Full Text Article

Enhanced HTML    Acrobat PDF (1507 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photonic crystals in which the refractive index changes periodically provide an exciting tool for the manipulation of photons and have seen substantial progress in recent years. In this article, we discuss two topics regarding photonic crystal lasers: (i) ultimate nanolasers based on the photonic bandgap effect and high-Q nanocavities, and (ii) broad-area photonic crystal lasers based on the photonic bandedge effect.

© 2010 Optical Society of America

OCIS Codes
(250.7270) Optoelectronics : Vertical emitting lasers
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(230.5298) Optical devices : Photonic crystals

History
Original Manuscript: July 2, 2010
Manuscript Accepted: July 23, 2010
Published: October 1, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Citation
Susumu Noda, "Photonic crystal lasers—ultimate nanolasers and broad-area coherent lasers [Invited]," J. Opt. Soc. Am. B 27, B1-B8 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-11-B1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2062 (1987). [CrossRef] [PubMed]
  2. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305, 227–229 (2004). [CrossRef] [PubMed]
  3. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. L. Vanmaekelbergh, and W. L. Vos, “Controlling the dynamics of spontanious emission from quantum dots by photonic crysals,” Nature 430, 654–657 (2004). [CrossRef] [PubMed]
  4. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals,” Science 308, 1296–1298 (2005). [CrossRef] [PubMed]
  5. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nature Photon. 1, 449–458 (2007). [CrossRef]
  6. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in aphotonic bandgap structure,” Nature 289, 608–610 (2000). [CrossRef]
  7. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003). [CrossRef] [PubMed]
  8. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Mater. 4, 207–210 (2005). [CrossRef]
  9. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in a ultrasmall high-Q photonic-crystal nanocavity,” Nature Photon. 1, 49–52 (2007). [CrossRef]
  10. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1921 (1999). [CrossRef] [PubMed]
  11. S. Strauf, K. Hennessy, M. T. Rakher, T. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96, 127404 (2006). [CrossRef] [PubMed]
  12. S. Noda, “Seeking the ultimate nanolaser,” Science 314, 206–261 (2006). [CrossRef]
  13. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004). [CrossRef] [PubMed]
  14. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamouglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445, 896–899 (2007). [CrossRef] [PubMed]
  15. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007). [CrossRef] [PubMed]
  16. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nature Mater. 6, 862–865 (2007). [CrossRef]
  17. M. F. Yanik and S. H. Fan, “Stopping light all optically,” Phys. Rev. Lett. 92, 083901 (2004). [CrossRef] [PubMed]
  18. T. Baba, “Slow light in photonic crystals,” Nature Photon. 2, 465–473 (2008). [CrossRef]
  19. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75, 316–318 (1999). [CrossRef]
  20. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7–9 (1999). [CrossRef]
  21. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123–1125 (2001). [CrossRef] [PubMed]
  22. E. Miyai, K. Sakai, T. Okano, W. Kunishi, D. Ohnishi, and S. Noda, “Lasers producing tailored beams,” Nature 441, 946–946 (2006). [CrossRef] [PubMed]
  23. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008). [CrossRef]
  24. M. Yamaguchi, T. Asano, and S. Noda, “Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics,” Opt. Express 16, 18067–18081 (2008). [CrossRef] [PubMed]
  25. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yanamoto, and J. Vuckovic, “Controlling the spontanious emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95, 013904 (2005). [CrossRef] [PubMed]
  26. K. Kounoike, M. Yamaguchi, M. Fujita, T. Asano, J. Nakamura, and S. Noda, “Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab,” Electron. Lett. 41, 1402–1403 (2005). [CrossRef]
  27. Y. Takahashi, H. Hagino, Y. Tanaka, B. S. Song, T. Asano, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17206–17213 (2007). [CrossRef] [PubMed]
  28. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature-dependence of its threshold current,” Appl. Phys. Lett. 40, 939–941 (1982). [CrossRef]
  29. M. Tabuchi, S. Noda, and A. Sasaki, “Mesoscopic structure in lattice-mismatched heteroepitaxial interface layers,” in Science and Technology of Mesoscopic Structures, S.Namba, C.Hamaguchi, and T.Ando, eds. (Springer, 1992), pp. 379–384.
  30. A. Badolato, K. Hennessy, M. Dreiser, E. Hu, P. M. Petroff, and A. Imamouglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308, 1158–1161 (2005). [CrossRef] [PubMed]
  31. M. Yamaguchi, T. Asano, K. Kojima, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” Phys. Rev. B 80, 155326–155335 (2009). [CrossRef]
  32. M. Yamaguchi, T. Asano, and S. Noda, “Quantum electrodynamics of a nanocavity coupled with exciton complexes in a quantum dot,” in Proceedings of the 8th International Conference on Physics of Light-Matter Coupling in Nanostructures (The University of Tokyo, 2008), paper WeP-2. [PubMed]
  33. A. Naesby, T. Suhr, P. T. Kristensen, and J. Mørk, “Influence of pure dephasing on emission spectra from single photon sources,” Phys. Rev. A 78, 045802 (2008). [CrossRef]
  34. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ohta, and Y. Arakawa, “Photonic crystal nanocavity laser with a signal quantum dot gain,” Opt. Express 18, 15975–15982 (2009). [CrossRef]
  35. D. Ohnishi, T. Okano, M. Imada, and S. Noda, “Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser,” Opt. Express 12, 1562–1568 (2004). [CrossRef] [PubMed]
  36. R. Dorn, S. Quabis, and G. Leuchs, “Sharper focus for a radially polarized light beam,” Phys. Rev. Lett. 91, 233901 (2003). [CrossRef] [PubMed]
  37. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band edge identification for a surface-emitting photonic-crystal laser,” IEEE J. Sel. Areas Commun. 23, 1330–1334 (2005). [CrossRef]
  38. K. Sakai, E. Miyai, and S. Noda, “Coupled-wave theory for square-lattice photonic crystal lasers with TE polarization,” IEEE J. Quantum Electron. 46, 788–795 (2010). [CrossRef]
  39. T. Sakaguchi, W. Kunishi, S. Arimura, K. Nagase, E. Miyai, D. Ohnishi, K. Sakai, and S. Noda, “Surface-emitting photonic-crystal laser with 35 W peak power,” in Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference 2009, Technical Digest (Optical Society of America, 2009), paper CTuH1. [PubMed]
  40. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. H. Kim, and Y. H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004). [CrossRef] [PubMed]
  41. Y. Kurosaka, K. Sakai, S. Iwahashi, E. Miyai, D. Ohnishi, W. Kunishi, and S. Noda, “Lasing characteristics of 2D photonic-crystal surface emitting laser consisting of different periodic complex resonators,” in Proceedings of the 55th JSAP and Related Societies Conference (Japan Society of Applied Physics, 2008), paper 28p-ZX-4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited