OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: B36–B44

Status and prospects for metallic and plasmonic nano-lasers [Invited]

Martin T. Hill  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. B36-B44 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (484 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A remarkable miniaturization of lasers has occurred in just the past few years by employing metals to form the laser resonator. From having minimum laser dimensions being at least several wavelengths of the light emitted, many devices have been shown where the laser size is of a wavelength or less. Additionally some devices show lasing in structures significantly smaller than the wavelength of light in several dimensions, and the optical mode is far smaller than allowed by the diffraction limit. In this article we review what has been achieved then look forward to what some of the directions development could take and where possible applications could lie. In particular we show that there are devices with an optical size slightly larger or near the diffraction limit which could soon be employed in many applications requiring coherent light sources. Application of devices with dimensions far below the diffraction limit is also on the horizon, but may take more time.

© 2010 Optical Society of America

OCIS Codes
(250.5403) Optoelectronics : Plasmonics
(250.5960) Optoelectronics : Semiconductor lasers

Original Manuscript: July 7, 2010
Revised Manuscript: August 22, 2010
Manuscript Accepted: August 24, 2010
Published: October 12, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Martin T. Hill, "Status and prospects for metallic and plasmonic nano-lasers [Invited]," J. Opt. Soc. Am. B 27, B36-B44 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Iga, “Surface-emitting laser—Its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000). [CrossRef]
  2. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkusand, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science 284, 1819–1821 (1999). [CrossRef] [PubMed]
  3. H. A. Atwater, “The promise of plasmonics,” Sci. Am. 296, 38–45 (April, 2007). [CrossRef]
  4. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface Plasmon subwavelength optics,” Nature (London) 424, 824–830 (2003). [CrossRef]
  5. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12, 4072–4079 (2004). [CrossRef] [PubMed]
  6. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258, 295–299 (2006). [CrossRef]
  7. A. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801–646807 (2007). [CrossRef]
  8. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in Metallic-Coated Nanocavities,” Nat. Photonics 1, 589–594 (2007). [CrossRef]
  9. G. P. Agrawal and N. K. Dutta, Semiconductor Lasers, 2nd ed. (Van Nostrand Reinhold, 1993).
  10. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18, 8790 (2010). [CrossRef] [PubMed]
  11. B. Prade and J. Y. Vinet, “Guided optical waves in fibers with negative dielectric constant,” J. Lightwave Technol. 12, 6–18 (1994). [CrossRef]
  12. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17, 11107–11112 (2009). [CrossRef] [PubMed]
  13. M. P. Nezhad, A. Simic, O. Bondaenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nature Photon. 4, 395–399 (2010). [CrossRef]
  14. R. Perahia, T. P. Mayer Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95, 201114 (2009). [CrossRef]
  15. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature (London) 461, 629–632 (2009). [CrossRef]
  16. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature (London) 460, 1110–1112 (2009). [CrossRef]
  17. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003). [CrossRef] [PubMed]
  18. C.-Y. Lu, S.-W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96, 251101 (2010). [CrossRef]
  19. H. G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305, 1444–1447 (2004). [CrossRef] [PubMed]
  20. H. Altug, D. Englund, and J. Vučković, “Ultrafast photonic crystal nanocavity laser,” Nat. Phys. 2, 485–488 (2006). [CrossRef]
  21. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991). [CrossRef]
  22. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006). [CrossRef]
  23. S.-W. Chang, T.-R. Lin, and S. L. Chuang, “Theory of plasmonic Fabry-Perot nanolasers,” Opt. Express 18, 15039–15053 (2010). [CrossRef] [PubMed]
  24. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  25. S.-H. Kim, Y.-H. Lee, J. Huang, and A. Scherer, “Unidirectional vertical emission from photonic crystal nanolaser,” 11th International Conference on Transparent Optical Networks ( ICTON ’09) (IEEE, 2009), paper Tu.C4.5. [CrossRef]
  26. E. K. Lau, A. Lakhani, R. S. Tucker, and M. C. Wu, “Enhanced modulation bandwidth of nanocavity light emitting devices,” Opt. Express 17, 7790–7799 (2009). [CrossRef] [PubMed]
  27. M. Miller, M. Grabherr, R. Jager, and K. J. Ebeling, “High-power VCSEL arrays for emission in the watt regime at room temperature,” IEEE Photon. Technol. Lett. 13, 173–175 (2001). [CrossRef]
  28. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004). [CrossRef]
  29. D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, “Organic plasmon-emitting diode,” Nat. Photonics 2, 684–687 (2008). [CrossRef]
  30. R. J. Walters, R. V. A. Van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nature Mater. 9, 21–25 (2009). [CrossRef]
  31. C. Walther, G. Scalari, M. I. Amanti, M. Beck, and J. Faist, “Microcavity laser oscillating in a circuit based resonantor,” Science 327, 1495–1497 (2010). [CrossRef] [PubMed]
  32. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguide,” Appl. Phys. Lett. 86, 211101 (2005). [CrossRef]
  33. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82, 1158–1160 (2003). [CrossRef]
  34. M. T. Hill, “Micro and nanolasers for digital photonics,” Proceedings of the European Conference on Integrated Optics (ECIO), Copenhagen (Technical University of Denmark, 2007) (pp. WC0-64/67).
  35. M. T. Hill, “Metallic nano-cavity lasers at near infrared wavelengths,” Proc. SPIE 7394, 739409 (2009). [CrossRef]
  36. D. J. Gargas, M. C. Moore, A. Ni, S.-W. Chang, Z. Zhang, S.-L. Chuang, and P. Yang, “Whispering gallery mode lasing from zinc oxide hexagonal nanodisks,” ACS Nano 4, 3270–3276 (2010). [CrossRef] [PubMed]
  37. M. Asada, Y. Miyamoto, and Y. Suematsu, “Gain and the threshold of three-dimensional quantum-box lasers,” IEEE J. Quantum Electron. QE-22, 1915–1921 (1986). [CrossRef]
  38. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap Plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31, 3288–3290 (2006). [CrossRef] [PubMed]
  39. J. Buus, M. C. Amann, and D. J. Blumenthal, “Distributed Feedback Lasers,” in Tunable Laser Diodes and Related Optical Sources, 2nd ed., (Wiley, 2005), pp. 59–68 .
  40. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides,” Bull. Pol. Acad. Sci.: Biol. Sci. 19, 91–93 (2007).
  41. M. J. H. Marell, Dept. of Electrical Engineering, Technische Universiteit Eindhoven, Postbus, 513, 5600 MB Eindhoven, The Netherlands, is preparing a manuscript on gap-plasmon mode DFB lasers in the near infrared wavelengths.
  42. J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, “Silicon-based plasmonics for on-chip photonics,” IEEE J. Sel. Top. Quantum Electron. 16, 295–305 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited