OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 11 — Nov. 1, 2010
  • pp: B51–B62

The evolving optical frequency comb [Invited]

Scott A. Diddams  »View Author Affiliations

JOSA B, Vol. 27, Issue 11, pp. B51-B62 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (908 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In the past decade we have witnessed remarkable advances associated with the frequency stabilization of the comb present in the output of a mode-locked femtosecond laser. While proving itself to be fantastically successful in its role as the “gears” of optical atomic clocks, the optical frequency comb has further evolved into a valuable tool for a wide range of applications, including ultraviolet and infrared spectroscopy, frequency synthesis, optical and microwave waveform generation, astronomical spectrograph calibration, and attosecond pulse generation, to name a few. In this review, I will trace several of these developments while attempting to offer perspective on the challenges and opportunities for frequency combs that might lie ahead in the next decade.

© 2010 U.S. Government

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers

Original Manuscript: July 13, 2010
Revised Manuscript: September 11, 2010
Manuscript Accepted: September 17, 2010
Published: October 22, 2010

Virtual Issues
(2010) Advances in Optics and Photonics

Scott A. Diddams, "The evolving optical frequency comb [Invited]," J. Opt. Soc. Am. B 27, B51-B62 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493 (1960). [CrossRef]
  2. A. Javan, W. R. Bennett, Jr., and D. R. Herriott, “Population inversion and continuous optical maser oscillation in a gas discharge containing a He-Ne mixture,” Phys. Rev. Lett. 6, 106-110 (1961). [CrossRef]
  3. L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He-Ne laser modes induced by synchronous intracavity modulation,” Appl. Phys. Lett. 5, 4-5 (1964). [CrossRef]
  4. A. J. DeMaria, D. A. Stetser, and H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174-176 (1966). [CrossRef]
  5. E. P. Ippen, C. V. Shank, and A. Dienes, “Passive mode locking of the cw dye laser,” Appl. Phys. Lett. 21, 348-350 (1972). [CrossRef]
  6. J. N. Eckstein, A. I. Ferguson, and T. W. Hänsch, “High-resolution 2-photon spectroscopy with picosecond light-pulses,” Phys. Rev. Lett. 40, 847 (1978). [CrossRef]
  7. J. L. Hall, “Optical frequency measurement: 40 years of technology revolutions,” IEEE J. Sel. Top. Quantum Electron. 6, 1136 (2000). [CrossRef]
  8. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233 (2002). [CrossRef] [PubMed]
  9. T. W. Hänsch, “Nobel lecture: Passion for precision,” Rev. Mod. Phys. 78, 1297 (2006). [CrossRef]
  10. J. L. Hall, “Nobel lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78, 1279 (2006). [CrossRef]
  11. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air--silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25, 25-27 (2000). [CrossRef]
  12. S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, and T. W. Hänsch, “Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb,” Phys. Rev. Lett. 84, 5102 (2000). [CrossRef] [PubMed]
  13. H. R. Telle, G. Steinmeyer, A. E. Dunlop, J. Stenger, D. H. Sutter, and U. Keller, “Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation,” Appl. Phys. B 69, 327 (1999). [CrossRef]
  14. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond modelocked lasers and direct optical frequency synthesis,” Science 288, 635 (2000). [CrossRef] [PubMed]
  15. T. M. Ramond, S. A. Diddams, L. Hollberg, and A. Bartels, “Phase coherent link from optical to microwave frequencies via the broadband continuum from a 1 GHz Ti:sapphire femtosecond oscillator,” Opt. Lett. 27, 1842-1844 (2002). [CrossRef]
  16. Z. Chang and P. Corkum, “Attosecond photon sources: the first decade and beyond,” J. Opt. Soc. Am. B 27, B9-B17 (2010). [CrossRef]
  17. A. Baltuška, Th. Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch. Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, “Attosecond control of electronic processes by intense light fields,” Nature 421, 611 (2003). [CrossRef] [PubMed]
  18. A. Apolonski, A. Poppe, G. Tempea, Ch. Spielmann, Th. Udem, R. Holzwarth, T. W. Hänsch, and F. Krausz, “Controlling the phase evolution of few-cycle light pulses,” Phys. Rev. Lett. 85, 740-743 (2000). [CrossRef] [PubMed]
  19. R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hänsch, P. Russbüldt, K. Gäbel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light frequency comb generation with a diode-pumped Cr:LiSAF laser,” Opt. Lett. 26, 1376-1378 (2001). [CrossRef]
  20. B. Washburn, S. Diddams, N. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “A self-referenced, erbium fiber laser-based frequency comb in the near infrared,” Opt. Lett. 29, 252-254 (2004). [CrossRef]
  21. F. Tauser, A. Leitenstorfer, and W. Zinth, “Amplified femtosecond pulses from an Er:fiber system: Nonlinear pulse shortening and self-referencing detection of the carrier-envelope-phase evolution,” Opt. Express 11, 594-600 (2003). [CrossRef] [PubMed]
  22. K. Kim, B. R. Washburn, G. Wilpers, C. W. Oates, L. Hollberg, N. R. Newbury, S. A. Diddams, J. W. Nicholson, and M. F. Yan, “Stabilized frequency comb with a self-referenced femtosecond Cr:forsterite laser,” Opt. Lett. 30, 932-934 (2005). [CrossRef] [PubMed]
  23. K. Kim, S. A. Diddams, P. Westbrook, J. W. Nicholson, and K. S. Feder, “Improved stabilization of a 1.3 μm femtosecond optical frequency comb using spectrally tailored continuum from a nonlinear fiber grating,” Opt. Lett. 31, 277-279 (2006). [CrossRef] [PubMed]
  24. I. Hartl, M. E. Fermann, P. Pal, and W. H. Knox, “Self-referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CMU2.
  25. I. Hartl, L. B. Fu, B. K. Thomas, L. Dong, M. E. Fermann, J. Kim, F. X. Kärtner, and C. Menyuk, “Self-referenced fCEO stabilization of a low noise femtosecond fiber oscillator,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper CTuC4.
  26. S. A. Meyer, J. A. Squier, and S. A. Diddams, “Diode-pumped Yb:KYW femtosecond laser frequency comb with stabilized carrier-envelope offset frequency,” European Physics Journal D 48, 19 (2008). [CrossRef]
  27. M. C. Stumpf, S. Pekarek, A. E. H. Oehler, T. Südmeyer, J. M. Dudley, and U. Keller, “Self-referencable frequency comb from a 170-fs, 1.5-μm solid-state laser oscillator,” Appl. Phys. B 99, 401-408(2009). [CrossRef]
  28. D. C. Heinecke, A. Bartels, T. M. Fortier, D. A. Braje, L. Hollberg, and S. A. Diddams, “Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87Rubidium,” Phys. Rev. A 80, 053806 (2009). [CrossRef]
  29. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29, 983-996 (1993). [CrossRef]
  30. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs,” J. Opt. Soc. Am. B 24, 1756-1770 (2007). [CrossRef]
  31. R. P. Scott, T. D. Mulder, K. A. Baker, and B. H. Kolner, “Amplitude and phase noise sensitivity of modelocked Ti:sapphire lasers in terms of a complex noise transfer function,” Opt. Express 15, 9090-9095 (2007). [CrossRef] [PubMed]
  32. N. R. Newbury, B. R. Washburn, K. L. Corwin, and R. S. Windeler, “Noise amplification during supercontinuum generation in microstructure fiber,” Opt. Lett. 28, 944- 946 (2003). [CrossRef] [PubMed]
  33. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Weber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904 (2003). [CrossRef] [PubMed]
  34. J. N. Ames, S. Ghosh, R. S. Windeler, A. L. Gaeta, and S. T. Cundiff, “Excess noise generation during spectral broadening in microstructured fiber,” Appl. Phys. B 77, 279 (2003). [CrossRef]
  35. R. Ell, U. Morgner, F. X. Kärtner, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Generation of 5 fs pulses and octave-spanning spectra directly from a Ti:sapphire laser,” Opt. Lett. 26, 373-375 (2001). [CrossRef]
  36. T. M. Fortier, D. J. Jones, and S. T. Cundiff, “Phase stabilization of an octave-spanning Ti:sapphire laser,” Opt. Lett. 28, 2198-2200 (2003). [CrossRef] [PubMed]
  37. T. Fortier, A. Bartels, and S. A. Diddams, “Octave-spanning Ti:sapphire laser with a repetition rate >1 GHz for optical frequency measurements and comparisons,” Opt. Lett. 31, 1011-1013(2006). [CrossRef] [PubMed]
  38. M. S. Kirchner, D. A. Braje, T. M. Fortier, A. M. Weiner, L. Hollberg, and S. A. Diddams, “Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition rate multiplication,” Opt. Lett. 34, 872-874 (2009). [CrossRef] [PubMed]
  39. A. Bartels, D. Heinecke, and S. A. Diddams, “10 GHz self-referenced optical frequency comb,” Science 326, 681 (2009). [CrossRef] [PubMed]
  40. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3, 351 (2009). [CrossRef]
  41. P. Del'Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214-1217 (2007). [CrossRef] [PubMed]
  42. A. A. Savchenkov, A. B. Matsko, V. S. Ilchenko, I. Solomatine, D. Seidel, and L. Maleki, “Tunable optical frequency comb with a crystalline whispering gallery mode resonator,” Phys. Rev. Lett. 101, 093902 (2008). [CrossRef] [PubMed]
  43. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photonics 4, 37-40 (2010). [CrossRef]
  44. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photonics 4, 41-45 (2010). [CrossRef]
  45. D. Braje, L. Hollberg, and S. A. Diddams, “Brillouin-enhanced hyperparametric generation of an optical frequency comb in a monolithic highly nonlinear fiber cavity pumped by a cw laser,” Phys. Rev. Lett. 102, 193902 (2009). [CrossRef] [PubMed]
  46. P. Del'Haye, T. Herr, E. Gavartin, R. Holzwarth, and T. J. Kippenberg, “Octave spanning frequency comb on a chip,” arXiv:0912.4890v1 [physics.optics].
  47. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318 (2004), and references therein. [CrossRef] [PubMed]
  48. L. Hollberg, S. Diddams, A. Bartels, T. Fortier, and K. Kim, “The measurement of optical frequencies,” Metrologia 42, S105 (2005). [CrossRef]
  49. A. Javan, E. A. Ballik, and W. L. Bond, “Frequency characteristics of a continuous-wave He-Ne optical maser,” J. Opt. Soc. Am. 52, 96-98 (1962). [CrossRef]
  50. R. L. Barger and J. L. Hall, “Pressure shift and broadening of methane line at 3.39 μ studied by laser-saturated molecular absorption,” Phys. Rev. Lett. 22, 4 (1969). [CrossRef]
  51. D. M. Kane, S. R. Bramwell, and A. I. Ferguson, “FM dye lasers,” Appl. Phys. B 39, 171 (1986). [CrossRef]
  52. D. J. Wineland, J. C. Bergquist, W. M. Itano, F. Diedrich, and C. S. Weimer, “Frequency standards in the optical spectrum,” in The Hydrogen AtomG.F.Bassani, eds. (Springer, 1989), pp. 123-133.
  53. H. Schnatz, B. Lipphardt, J. Helmcke, F. Riehle, and G. Zinner, “First phase-coherent frequency measurement of visible radiation,” Phys. Rev. Lett. 76, 18-21 (1996). [CrossRef] [PubMed]
  54. H. R. Telle, D. Meschede, and T. W. Hänsch, “Realization of a new concept for visible frequency division: phase locking of harmonic and sum frequencies,” Opt. Lett. 15, 532-534 (1990). [CrossRef] [PubMed]
  55. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D-1 line with a mode-locked laser,” Phys. Rev. Lett. 823568-3571 (1999). [CrossRef]
  56. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24, 881-883 (1999). [CrossRef]
  57. S. A. Diddams, Th. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293, 825 (2001). [CrossRef] [PubMed]
  58. J. Stenger, H. Schnatz, C. Tamm, and H. R. Telle, “Ultraprecise measurement of optical frequency ratios,” Phys. Rev. Lett. 88, 073601 (2002). [CrossRef] [PubMed]
  59. L.-S. Ma, Z. Bi, A. Bartels, L. Robertsson, M. Zucco, R. S. Windeler, G. Wilpers, C. Oates, L. Hollberg, and S. A. Diddams, “Optical frequency synthesis and comparison with uncertainty at the 10-19 level,” Science 303, 1843 (2004). [CrossRef] [PubMed]
  60. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799-3802 (1999). [CrossRef]
  61. D. J. Wineland, J. C. Bergquist, J. J. Bollinger, R. E. Drullinger, and W. M. Itano, “Quantum computers and atomic clocks,” inProceedings of the 6th Symposium on Frequency Standards and Metrology, P.Gill, ed. (World Scientific, 2002) pp. 361-368.
  62. P. O. Schmidt, T. Rosenband, C. Langer, W. M. Itano, J. C. Bergquist, and D. J. Wineland, “Spectroscopy using quantum logic,” Science 309, 749-752 (2005). [CrossRef] [PubMed]
  63. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, and T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104, 070802 (2010). [CrossRef] [PubMed]
  64. J. Ye, H. J. Kimble, and H. Katori, “Quantum state engineering and precision metrology using state-insensitive light traps,” Science 320, 1734-1738 (2008). [CrossRef] [PubMed]
  65. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, Th. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S-2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84, 5496-5499 (2000). [CrossRef] [PubMed]
  66. Y. V. Baklanov and V. P. Chebotayev, “Narrow resonances of two-photon absorption of super-narrow pulses in a gas,” Appl. Phys. 1297-99 (1977). [CrossRef]
  67. M. J. Snadden, A. S. Bell, E. Riis, and A. I. Ferguson, “Two-photon spectroscopy of laser-cooled Rb using a mode-locked laser,” Opt. Commun. 125, 70-76 (1996). [CrossRef]
  68. A. Marian, M. C. Stowe, J. R. Lawall, D. Felinto, and J. Ye, “United time-frequency spectroscopy for dynamics and global structure,” Science 306, 2063 (2004). [CrossRef] [PubMed]
  69. V. Gerginov, C. E. Tanner, S. A. Diddams, A. Bartels, and L. Hollberg, “High resolution spectroscopy with a femtosecond laser frequency comb,” Opt. Lett. 30, 1734-1736 (2005). [CrossRef] [PubMed]
  70. J. E. Stalnaker, V. Mbele, V. Gerginov, T. M. Fortier, S. A. Diddams, L. Hollberg, and C. E. Tanner, “Femtoseond frequency comb measurement of absolute frequencies and hyperfine coupling constants in cesium vapor,” Phys. Rev. A 81, 043840 (2010). [CrossRef]
  71. P. Fendel, S. D. Bergeson, Th. Udem, and T. W. Hänsch, “Two-photon frequency comb spectroscopy of the 6 s-8 s transition in cesium,” Opt. Lett. 32, 701-703 (2007). [CrossRef] [PubMed]
  72. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, “Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection,” Science 311, 1595-1599 (2006). [CrossRef] [PubMed]
  73. S. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with spectrally-resolved modes of a femtosecond laser frequency comb,” Nature 445, 627 (2007). [CrossRef] [PubMed]
  74. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397-414 (2008). [CrossRef]
  75. K. C. Cossel, F. Adler, K. A. Bertness, M. J. Thorpe, J. Feng, M. W. Raynor, and J. Ye, “Analysis of trace impurities in semiconductor gas via cavity-enhanced direct frequency comb spectroscopy,” arXiv:1003.1314v1 [physics.optics].
  76. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27, 766-768 (2002). [CrossRef]
  77. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29, 1542-1544 (2004). [CrossRef] [PubMed]
  78. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008). [CrossRef] [PubMed]
  79. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hansch, and N. Picque, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4, 55 (2010). [CrossRef]
  80. R. J. Jones, K. D. Moll, M. J. Thorpe, and J. Ye, “Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity,” Phys. Rev. Lett. 94, 193201 (2005). [CrossRef] [PubMed]
  81. Ch. Gohle, Th. Udem, J. Rauschenberger, R. Holzwarth, M. Herrmann, H. A. Schussler, F. Krausz, and T. W. Hänsch, “A frequency comb in the extreme ultraviolet,” Nature 436, 234-237 (2005). [CrossRef] [PubMed]
  82. D. Z. Kandula, C. Gohle, T. J. Pinkert, W. Ubachs, and K. S. E. Eikema, “Extreme ultraviolet frequency comb metrology,” arXiv:1004.5110v2 [physics.atom-ph].
  83. T. A. Johnson and S. A. Diddams, “Mid-IR frequency comb upconversion spectroscopy,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference, OSA Technical Digest (Optical Society of America, 2010), paper CPDB11.
  84. A. Pe'er, E. A. Shapiro, M. C. Stowe, M. Shapiro, and J. Ye, “Precise control of molecular dynamics with a femotosecond frequency comb,” Phys. Rev. Lett. 98, 113004 (2007). [CrossRef] [PubMed]
  85. K. -K. Ni, S Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, “A high phase-space density gas of polar molecules,” Science 322, 231-235 (2008). [CrossRef] [PubMed]
  86. M. T. Murphy, Th. Udem, R. Holzwarth, A. Sizmann, L. Pasquini, C. Araujo-Hauck, H. Dekker, S. D'Odorico, M. Fischer, T. W. Hansch, and A. Manescau, “High-precision wavelength calibration of astronomical spectrographs with laser frequency combs,” Mon. Not. R. Astron. Soc. 380, 839 (2007). [CrossRef]
  87. S. Osterman, S. Diddams, M. Beasley, C. Froning, L. Hollberg, P. MacQueen, V. Mbele, and A. Weiner, “A proposed laser frequency comb-based wavelength reference for high-resolution spectroscopy,” Proc. SPIE 6693, 66931G (2007). [CrossRef]
  88. C.-H. Li, A. J. Benedick, P. Fendel, A. G. Glenday, F. X. Kartner, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “A laser frequency comb that enables radial velocity measurements with a precision of 1 cms−1,” Nature 452, 610-612 (2008). [CrossRef] [PubMed]
  89. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D'Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 23, 1335 (2008). [CrossRef]
  90. D. Braje, M. Kirchner, S. Osterman, T. Fortier, and S. A. Diddams, “Astronomical spectrograph calibration with broad-spectrum frequency combs,” Eur. Phys. J. D 48, 57-66 (2008).
  91. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405, L16-L20 (2010). [CrossRef]
  92. A. J. Benedick, G. Chang, J. R. Birge, L. Chen, A. G. Glenday, C. Li, D. F. Phillips, A. Szentgyorgyi, S. Korzennik, G. Furesz, R. L. Walsworth, and F. X. Kärtner, “Visible wavelength astro-comb,” Opt. Express 18, 19175-19184 (2010). [CrossRef] [PubMed]
  93. F. Quinlan, G. Ycas, S. Osterman, and S. A. Diddams, “A 12.5 GHz-spaced optical frequency comb spanning >400 nm for infrared astronomical spectrograph calibration,” Rev. Sci. Inst. 81, 063105 (2010). [CrossRef]
  94. see, for example, http://www.psi.com.au/. Mention of specific products is for scientific communication only and does not constitute an endorsement by NIST.
  95. E. Ivanov and M. E. Tobar, “Low phase-noise sapphire crystal microwave oscillators: Current status,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 263 (2009). [CrossRef] [PubMed]
  96. S. Grop, P.-Y. Bourgeois, R. Boudot, Y. Kersale, E. Rubiola, and V. Giordano, “10 GHz cryocooled sapphire oscillator with extremely low phase noise,” Electron. Lett. 46, 420-421 (2010). [CrossRef]
  97. J. J. McFerran, E. N. Ivanov, G. Wilpers, C. W. Oates, S. A. Diddams, and L. Hollberg, “Low noise synthesis of microwave signals from an optical source,” Electron. Lett. 41, 36-37 (2005). [CrossRef]
  98. A. Bartels, S. A. Diddams, C. W. Oates, G. Wilpers, J. C. Bergquist, W. Oskay, and L. Hollberg, “Femtosecond laser based synthesis of ultrastable microwave signals from optical frequency references,” Opt. Lett. 30, 667-669 (2005). [CrossRef] [PubMed]
  99. W. Zhang, Z. Xu, M. Lours, R. Boudot, Y. Kersalé, G. Santarelli, and Y. Le Coq, “Sub-100 attoseconds stability optics-to-microwave synchronization,” Appl. Phys. Lett. 96, 211105 (2010). [CrossRef]
  100. S. A. Diddams, M. Kirchner, T. Fortier, D. Braje, A. M. Weiner, and L. Hollberg, “Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb,” Opt. Express 17, 3331-3340 (2009). [CrossRef] [PubMed]
  101. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1, 463-467 (2007). [CrossRef]
  102. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 phase×32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32, 865-867 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited