OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2471–2481

The multi-pulsing transition in mode-locked lasers: a low-dimensional approach using waveguide arrays

Matthew O. Williams, Eli Shlizerman, and J. Nathan Kutz  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2471-2481 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (573 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The onset of multi-pulsing, a ubiquitous phenomenon in laser cavities, is considered. The multi-pulsing transition is studied in a specific model that uses a waveguide array as the cavity saturable absorber. Using a low-dimensional reduction constructed by the method of proper orthogonal decomposition (principal components), a complete characterization of the multi-pulsing transition is given, including the onset of periodic solution (Hopf bifurcation) and period-doubling bifurcation and Neimark–Sacker (torus) bifurcation as routes to chaos. To the best of our knowledge, this is the first low-dimensional construction of the entire multi-pulsing transition from N to N + 1 pulses per round trip. The reduced model qualitatively reproduces the dynamics observed in the multi-pulse transition of the mode-locked laser and confirms recent experimental observations of periodic and chaotic behavior preceding the multi-pulsing transition.

© 2010 Optical Society of America

OCIS Codes
(140.1540) Lasers and laser optics : Chaos
(140.4050) Lasers and laser optics : Mode-locked lasers
(230.7370) Optical devices : Waveguides

ToC Category:
Lasers and Laser Optics

Original Manuscript: August 2, 2010
Revised Manuscript: September 19, 2010
Manuscript Accepted: September 20, 2010
Published: November 3, 2010

Matthew O. Williams, Eli Shlizerman, and J. Nathan Kutz, "The multi-pulsing transition in mode-locked lasers: a low-dimensional approach using waveguide arrays," J. Opt. Soc. Am. B 27, 2471-2481 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14, 2099–2111 (1997). [CrossRef]
  2. L. Feng, P. K. A. Wai, and J. N. Kutz, “A geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Op. Soc. Am. B 27, 2068–2077 (2010). [CrossRef]
  3. B. G. Bale, K. Kieu, J. N. Kutz, and F. Wise, “Transition dynamics for multi-pulsing in mode-locked lasers,” Opt. Express 17, 23137–23146 (2009). [CrossRef]
  4. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, “Bifurcations and multiple period soliton pulsations in a passively mode-locked fiber laser,” Phys. Rev. E 70, 066612 (2010). [CrossRef]
  5. T. Pertsch, U. Peschel, and F. Lederer, “All-optical switching in quadratically nonlinear waveguide arrays,” Opt. Lett. 28, 102–104 (2003). [CrossRef] [PubMed]
  6. R. A. Vicencio, M. Molina, and Y. S. Kivshar, “All-optical switching and amplification of discrete vector solitons in nonlinear cubic birefringent waveguide arrays,” Opt. Lett. 29, 2905–2907 (2004). [CrossRef]
  7. R. A. Vicencio, M. I. Molina, and Y. S. Kivshar, “Switching of discrete optical solitons in engineered waveguide arrays,” Phys. Rev. E 70, 026602 (2004). [CrossRef]
  8. A. B. Aceves, G. G. Luther, C. De Angelis, A. M. Rubenchik, and S. K. Turitsyn, “Energy localization in nonlinear fiber arrays: collapse-effect compressor,” Phys. Rev. Lett. 75, 73–76 (1995). [CrossRef] [PubMed]
  9. D. Hudson, K. Shish, T. Schibli, J. N. Kutz, D. Christodoulides, R. Morandotti, and S. Cundiff, “Nonlinear femtosecond pulse reshaping in waveguide arrays,” Opt. Lett. 33, 1440–1442 (2008). [CrossRef] [PubMed]
  10. M. Matuszewski, I. L. Garanovich, and A. A. Sukhorukov, “Light bullets in nonlinear periodically curved waveguide arrays,” Phys. Rev. A 81, 043833 (2010). [CrossRef]
  11. M. O. Williams, C. W. McGrath, and J. N. Kutz, “Light-bullet routing and control with planar waveguide arrays,” Opt. Express 18, 11671–11682 (2010). [CrossRef] [PubMed]
  12. J. N. Kutz, C. Conti, and S. Trillo, “Mode-locked X-wave lasers,” Opt. Express 15, 16022–16028 (2007). [CrossRef] [PubMed]
  13. Y. Lahini, E. Frumker, Y. Silberberg, S. Droulias, K. Hizanidis, R. Morandotti, and D. N. Christodoulides, “Discrete x-wave formation in nonlinear waveguide arrays,” Phys. Rev. Lett. 98, 023901 (2007). [CrossRef] [PubMed]
  14. P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “x, y, and z waves: Extended structures in nonlinear lattices,” Phys. Rev. E 75, 016607 (2007). [CrossRef]
  15. H. S. Eisenberg, Y. Silberberg, R. Morandotti, A. R. Boyd, and J. S. Aitchison, “Discrete spatial optical solitons in waveguide arrays,” Phys. Rev. Lett. 81, 3383–3386 (1998). [CrossRef]
  16. A. B. Aceves, C. De Angelis, T. Peschel, R. Muschall, F. Lederer, S. Trillo, and S. Wabnitz, “Discrete self-trapping, soliton interactions, and beam steering in nonlinear waveguide arrays,” Phys. Rev. E 53, 1172–1189 (1996). [CrossRef]
  17. H. S. Eisenberg, R. Morandotti, Y. Silberberg, J. M. Arnold, G. Pennelli, and J. S. Aitchison, “Optical discrete solitons in waveguide arrays. I. Soliton formation,” J. Opt. Soc. Am. B 19, 2938–2944 (2002). [CrossRef]
  18. U. Peschel, R. Morandotti, J. M. Arnold, J. S. Aitchison, H. S. Eisenberg, Y. Silberberg, T. Pertsch, and F. Lederer, “Optical discrete solitons in waveguide arrays. 2. Dynamic properties,” J. Opt. Soc. Am. B 19, 2637–2644 (2002). [CrossRef]
  19. D. N. Christodoulides, F. Lederer, and Y. Silberberg, “Discretizing light behaviour in linear and nonlinear waveguide lattices,” Nature 424, 817–823 (2003). [CrossRef] [PubMed]
  20. A. B. Aceves, C. De Angelis, A. M. Rebenchik, and S. K. Turitsyn, “Multidimensional solitons in fiber arrays,” Opt. Lett. 19, 329–331 (1994). [CrossRef] [PubMed]
  21. V. K. Mezentsev, S. L. Musher, I. V. Ryzhenkova, and S. K. Turitsyn, “Two-dimensional solitons in discrete systems,” JETP Lett. 60, 829–835 (1994).
  22. J. Proctor and J. N. Kutz, “Passive mode-locking by use of waveguide arrays,” Opt. Lett. 30, 2013–2015 (2005). [CrossRef] [PubMed]
  23. J. N. Kutz and B. Sandstede, “Theory of passive harmonic mode-locking using waveguide arrays,” Opt. Express 16, 636–650 (2008). [CrossRef] [PubMed]
  24. B. G. Bale, J. N. Kutz, and B. Sandstede, “Optimizing waveguide array mode-locking for high-power fiber lasers,” in Proceedings of Photonics North 2009 (2009), Vol. 7386, paper 73862W.
  25. B. G. Bale and J. N. Kutz, “Variational method for mode-locked lasers,” J. Opt. Soc. Am. B 25, 1193–1202 (2008). [CrossRef]
  26. E. W. Laedke, K. H. Spatchek, and S. K. Turitsyn, “Stability of discrete solitons and quasicollapse to intrinsically localized modes,” Phys. Rev. Lett. 73, 1055–1059 (1994). [CrossRef] [PubMed]
  27. E. W. Laedke, K. H. Spatchek, S. K. Turitsyn, and V. K. Mezentsev, “Analytic criterion for soliton instability in a nonlinear fiber array,” Phys. Rev. E 52, 5549–5554 (1995). [CrossRef]
  28. C. R. Jones and J. N. Kutz, “Stability of mode-locked pulse solutions subject to saturable gain: computing linear stability with the Floquet–Fourier–Hill method,” J. Opt. Soc. Am. B 27, 1184–1194 (2010). [CrossRef]
  29. E. Shlizerman and V. Rom-Kedar, “Hierarchy of bifurcations in the truncated and forced nonlinear Schrodinger model,” Chaos 15, 013107 (2005). [CrossRef]
  30. E. Shlizerman and V. Rom-Kedar, “Three types of chaos in the forced nonlinear Schrödinger equation,” Phys. Rev. Lett. 96, 024104 (2006). [CrossRef] [PubMed]
  31. R. Scharf and A. R. Bishop, “Soliton chaos in the nonlinear Schrödinger equation with spatially periodic perturbations,” Phys. Rev. A 46, R2973–R2976 (1992). [CrossRef] [PubMed]
  32. D. Anderson, M. Lisak, and A. Berntson, “A variational approach to nonlinear evolution equations in optics,” Pramana 57, 917–936 (2001). [CrossRef]
  33. P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, 1998).
  34. M.-L. Rapún and J. M. Vega, “Reduced order models based on local pod plus Galerkin projection,” J. Comput. Phys. 229, 3046–3063 (2010). [CrossRef]
  35. D. Alonso, A. Velazquez, and J. Vega, “A method to generate computationally efficient reduced order models,” Comput. Methods Appl. Mech. Eng. 198, 2683–2691 (2009). [CrossRef]
  36. K. Kunisch and S. Volkwein, “Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal. 40, 492–515 (2002). [CrossRef]
  37. E. Ding, E. Shlizerman, and J. N. Kutz, “Modeling multi-pulsing transition in ring cavity lasers with proper orthogonal decomposition,” Phys. Rev. A 82, 023823 (2010). [CrossRef]
  38. A. Chatterjee, “An introduction to the proper orthogonal decomposition,” Curr. Sci. 78, 808–817 (2000).
  39. E. Shlizerman and V. Rom-Kedar, “Parabolic resonance: A route to Hamiltonian spatiotemporal chaos,” Phys. Rev. Lett. 102, 033901 (2009). [CrossRef] [PubMed]
  40. A. Dhooge, W. Govaerts, and Y. A. Kuznetsov, “Matcont: A MATLAB package for numerical bifurcation analysis of odes,” ACM Trans. Math. Softw. 29, 141–164 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited