OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2488–2494

Pulsed- and continuous-wave difference-frequency generation in AlGaAs Bragg reflection waveguides

J. B. Han, D. P. Kang, P. Abolghasem, B. J. Bijlani, and A. S. Helmy  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2488-2494 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (475 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Pulsed- and continuous-wave type-I and type-II difference-frequency generations (DFGs) in monolithic AlGaAs Bragg reflection waveguides were comparatively investigated. Phase matching bandwidth of exceeding 40 nm was observed in all the processes. Highest difference-frequency (DF) power of 2.45 nW was obtained in continuous-wave type-II interaction with the average external pump and signal powers of 62.9 and 2.9 mW, respectively. The corresponding nonlinear conversion efficiency is about 1.3 × 10 3 % W 1 for a sample with a length of 1.5 mm. Using split-step Fourier method, the impacts of third-order nonlinearities including two-photon absorption and self-phase modulation on the efficiency of the DFG are numerically investigated. Furthermore, the adverse effects of group velocity mismatch and group velocity dispersion of the interacting frequencies on the efficiency of the pulsed nonlinear process are theoretically studied. Simulations indicate that the dominant factors in limiting the efficiency of the pulsed interaction are group velocity mismatch between pump and DF signal and two-photon absorption of the interacting waves.

© 2010 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(160.4330) Materials : Nonlinear optical materials
(190.2620) Nonlinear optics : Harmonic generation and mixing
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Nonlinear Optics

Original Manuscript: July 22, 2010
Manuscript Accepted: September 24, 2010
Published: November 3, 2010

J. B. Han, D. P. Kang, P. Abolghasem, B. J. Bijlani, and A. S. Helmy, "Pulsed- and continuous-wave difference-frequency generation in AlGaAs Bragg reflection waveguides," J. Opt. Soc. Am. B 27, 2488-2494 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Rehle, D. Leleux, M. Erdelyi, F. Tittel, M. Fraser, and S. Friedfeld, “Ambient formaldehyde detection with a laser spectrometer based on difference-frequency generation in PPLN,” Appl. Phys. B 72, 947–952 (2001). [CrossRef]
  2. U. Willer, M. Saraji, A. Khorsandi, P. Geiser, and W. Schade, “Near- and mid-infrared laser monitoring of industrial processes, environment and security applications,” Opt. Lasers Eng. 44, 699–710 (2006). [CrossRef]
  3. S. Woutersen, U. Emmerichs, and H. J. Bakker, “Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure,” Science 278, 658–660 (1997). [CrossRef]
  4. C. J. Wang and P. Sahay, “Breath analysis using laser spectroscopic techniques: Breath biomarkers, spectral fingerprints, and detection limits,” Sensors 9, 8230–8262 (2009). [CrossRef]
  5. J. M. Schmitt, “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5, 1205–1215 (1999). [CrossRef]
  6. P. Bravetti, A. Fiore, V. Berger, E. Rosencher, J. Nagle, and O. Gauthier- Lafaye, “5.2–5.6-μm source tunable by frequency conversion in a GaAs-based waveguide,” Opt. Lett. 23, 331–333 (1998). [CrossRef]
  7. D. Zheng, L. A. Gordon, Y. S. Wu, R. S. Feigelson, M. M. Fejer, and R. L. Byer, “16-μm infrared generation by difference-frequency mixing in diffusion-bonded stacked GaAs,” Opt. Lett. 23, 1010–1012 (1998). [CrossRef]
  8. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11–25 (2008). [CrossRef]
  9. M. H. Dunn and M. Ebrahimzadeh, “Parametric generation of tunable light from continuous-wave to femtosecond pulses,” Science 286, 1513–1517 (1999). [CrossRef] [PubMed]
  10. E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett. 94, 171110 (2009). [CrossRef]
  11. A. Fiore, V. Berger, E. Rosencher, P. Bravetti, N. Laurent, and J. Nagle, “Phase-matched mid-infrared difference frequency generation in GaAs-based waveguides,” Appl. Phys. Lett. 71, 3622–3624 (1997). [CrossRef]
  12. S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and Neo Anoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett. 68, 2609–2611 (1996). [CrossRef]
  13. D. S. Hum and M. M. Fejer, “Recent advances in crystal optics,” C. R. Phys. 8, 180–198 (2007). [CrossRef]
  14. A. S. Helmy, “Phase matching using Bragg reflection waveguides for monolithic nonlinear optics applications,” Opt. Express 14, 1243–1252 (2006). [CrossRef] [PubMed]
  15. A. S. Helmy, B. Bijlani, and P. Abolghasem, “Phase matching in monolithic Bragg reflection waveguide,” Opt. Lett. 32, 2399–2401 (2007). [CrossRef] [PubMed]
  16. S. J. Wagner, A. A. Muhairi, J. S. Aitchison, and A. S. Helmy, “Modeling and optimization of quasi-phase matching via domain-disordering,” IEEE J. Quantum Electron. 44, 424–429 (2008). [CrossRef]
  17. J. B. Han, P. Abolghasem, B. J. Bijlani, A. Arjmand, S. Chaitanya Kumar, A. Esteban-Martin, M. Ebrahim-Zadeh, and A. S. Helmy, “Femtosecond second-harmonic generation in AlGaAs Bragg reflection waveguides: theory and experiment,” J. Opt. Soc. Am. B 27, 1291–1298 (2010). [CrossRef]
  18. P. Abolghasem, J. Han, A. Arjmand, B. J. Bijlani, and A. S. Helmy, “Highly efficient second-Harmonic generation in monolithic matching-layer enhanced AlxGa1−xAs Bragg reflection waveguides,” IEEE Photon. Technol. Lett. 21, 1462–1464 (2009). [CrossRef]
  19. J. B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett. 35, 2334–2336 (2010). [CrossRef] [PubMed]
  20. R. A. Baumgartner and R. L. Byer, “Optical parametric amplification,” IEEE J. Quantum Electron. 15, 432–444 (1979). [CrossRef]
  21. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  22. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” IEEE J. Quantum Electron. 33, 341–348 (1997). [CrossRef]
  23. E. W. Van Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett. 10, 490–492 (1985). [CrossRef] [PubMed]
  24. B. S. Wherrett, “Scaling rules for multiphoton interband absorption in semiconductors,” J. Opt. Soc. Am. B 1, 67–72 (1984). [CrossRef]
  25. M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electron nonlinear refraction in solids,” Opt. Quantum Electron. 27, 1296–1309 (1991). [CrossRef]
  26. K. L. Vodopyanov, O. Levi, P. S. Kuo, T. J. Pinguet, J. S. Harris, M. M. Fejer, B. Gerard, L. Becouarn, and E. Lallier, “Optical parametric oscillation in quasi-phase-matched GaAs,” Opt. Lett. 29, 1912–1914 (2004). [CrossRef] [PubMed]
  27. P. S. Kuo, K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, D. F. Bliss, and D. Weyburne, “GaAs optical parametric oscillator with circularly polarized and depolarized pump,” Opt. Lett. 32, 2735–2737 (2007). [CrossRef] [PubMed]
  28. B. J. Bijlani and A. S. Helmy, “Bragg reflection waveguide diode lasers,” Opt. Lett. 34, 3734–3736 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited