OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2534–2541

Fabrication of size scalable three-dimensional photonic structures via dual-beam multiple exposure and its robustness study

Xuelian Zhu, Guanquan Liang, Yongan Xu, Shih-Chieh Cheng, and Shu Yang  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2534-2541 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We theoretically designed dual-beam triple exposure interference lithography to fabricate three-term diamond-like structures in SU-8 photoresist with scalable size and investigated the robustness of the optical setup against potential experimental errors. Minimal distortion could be achieved by careful selection of the angle between the bisector of the two beams and the normal of the sample surface to precompensate the anisotropic shrinkage. A small deviation of incident beam angles, however, would lead to a significant change in structural size when the angle between the two incident beams was small for a large sized structure, whereas the translational symmetry of the SU-8 structure remained reasonably close to face-centered cubic. We then experimentally demonstrate size scalable diamond-like photonic structures with the lattice symmetry and size close to the theoretical design.

© 2010 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(260.3160) Physical optics : Interference
(160.5298) Materials : Photonic crystals

ToC Category:

Original Manuscript: June 28, 2010
Revised Manuscript: September 24, 2010
Manuscript Accepted: September 29, 2010
Published: November 5, 2010

Xuelian Zhu, Guanquan Liang, Yongan Xu, Shih-Chieh Cheng, and Shu Yang, "Fabrication of size scalable three-dimensional photonic structures via dual-beam multiple exposure and its robustness study," J. Opt. Soc. Am. B 27, 2534-2541 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404, 53–56 (2000). [CrossRef] [PubMed]
  2. C. K. Ullal, M. Maldovan, E. L. Thomas, G. Chen, Y. J. Han, and S. Yang, “Photonic crystals through holographic lithography: Simple cubic, diamond-like, and gyroid-like structures,” Appl. Phys. Lett. 84, 5434–5436 (2004). [CrossRef]
  3. D. C. Meisel, M. Diem, M. Deubel, F. Perez-Willard, S. Linden, D. Gerthsen, K. Busch, and M. Wegener, “Shrinkage precompensation of holographic three-dimensional photonic-crystal templates,” Adv. Mater. 18, 2964–2968 (2006). [CrossRef]
  4. X. L. Zhu, Y. A. Xu, and S. Yang, “Distortion of 3D SU8 photonic structures fabricated by four-beam holographic lithography with umbrella configuration,” Opt. Express 15, 16546–16560 (2007). [CrossRef] [PubMed]
  5. J. H. Moon and S. Yang, “Chemical aspects of three-dimensional photonic crystals,” Chem. Rev. (Washington, D.C.) 110, 547–574 (2010). [CrossRef]
  6. C. K. Ullal, M. Maldovan, M. Wohlgemuth, and E. L. Thomas, “Triply periodic bicontinuous structures through interference lithography: a level-set approach,” J. Opt. Soc. Am. A 20, 948–954 (2003). [CrossRef]
  7. T. Y. M. Chan, O. Toader, and S. John, “Photonic band gap templating using optical interference lithography,” Phys. Rev. E 71, 046605 (2005). [CrossRef]
  8. A. Hayek, Y. A. Xu, T. Okada, S. Barlow, X. L. Zhu, J. H. Moon, S. R. Marder, and S. Yang, “Poly(glycidyl methacrylate)s with controlled molecular weights as low-shrinkage resins for 3D multibeam interference lithography,” J. Mater. Chem. 18, 3316–3318 (2008). [CrossRef]
  9. J. H. Moon, S. Yang, W. T. Dong, J. W. Perry, A. Adibi, and S. M. Yang, “Core-shell diamond-like silicon photonic crystals from 3D polymer templates created by holographic lithography,” Opt. Express 14, 6297–6302 (2006). [CrossRef] [PubMed]
  10. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002). [CrossRef]
  11. R. C. Gauthier and K. W. Mnaymneh, “Design of photonic band gap structures through a dual-beam multiple exposure technique,” Opt. Laser Technol. 36, 625–633 (2004). [CrossRef]
  12. Y. Liu, S. Liu, and X. S. Zhang, “Fabrication of three-dimensional photonic crystals with two-beam holographic lithography,” Appl. Opt. 45, 480–483 (2006). [CrossRef] [PubMed]
  13. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13, 9605–9611 (2005). [CrossRef] [PubMed]
  14. A. Dwivedi, J. Xavier, J. Joseph, and K. Singh, “Formation of all fourteen Bravais lattices of three-dimensional photonic crystal structures by a dual beam multiple-exposure holographic technique,” Appl. Opt. 47, 1973–1980 (2008). [CrossRef] [PubMed]
  15. A. Chelnokov, S. Rowson, J. M. Lourtioz, V. Berger, and J. Y. Courtois, “An optical drill for the fabrication of photonic crystals,” J. Opt. A, Pure Appl. Opt. 1, L3–L6 (1999). [CrossRef]
  16. S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals by multibeam laser interference into a photopolymerizable resin,” Appl. Phys. Lett. 76, 2668–2670 (2000). [CrossRef]
  17. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398, 51–54 (1999). [CrossRef]
  18. H. B. Sun, T. Suwa, K. Takada, R. P. Zaccaria, M. S. Kim, K. S. Lee, and S. Kawata, “Shape precompensation in two-photon laser nanowriting of photonic lattices,” Appl. Phys. Lett. 85, 3708–3710 (2004). [CrossRef]
  19. M. Deubel, G. Von Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, “Direct laser writing of three-dimensional photonic-crystal templates for telecommunications,” Nature Mater. 3, 444–447 (2004). [CrossRef]
  20. D. C. Meisel, M. Wegener, and K. Busch, “Three-dimensional photonic crystals by holographic lithography using the umbrella configuration: Symmetries and complete photonic band gaps,” Phys. Rev. B 70, 165104 (2004). [CrossRef]
  21. G. Q. Liang, X. L. Zhu, Y. A. Xu, J. Li, and S. Yang, “Holographic design and fabrication of diamond symmetry photonic crystals via dual-beam quadruple exposure,” Adv. Mater. 22, 4524–4529 (2010). [CrossRef] [PubMed]
  22. Y. A. Xu, X. L. Zhu, and S. Yang, “Crack-free 3D hybrid microstructures from photosensitive organosilicates as versatile photonic templates,” ACS Nano 3, 3251–3259 (2009). [CrossRef] [PubMed]
  23. Data from Thorlabs, retrieved from http://www.thorlabs.com/Thorcat/16500/16580-D02.pdf.
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge U. Press, 1999). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited