OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2556–2567

Mode analysis of two-dimensional photonic crystal terahertz lasers with gain/loss dispersion characteristics

Shinichi Takigawa and Susumu Noda  »View Author Affiliations


JOSA B, Vol. 27, Issue 12, pp. 2556-2567 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002556


View Full Text Article

Enhanced HTML    Acrobat PDF (1527 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Gain/loss dispersion characteristics of photonic modes in a two-dimensional photonic crystal (PC) are demonstrated for the first time, to our knowledge. The dispersion analysis is based on an improved plane-wave expansion method that includes the gain/loss factor along the propagation direction of each plane wave and treats surface-emission properties. PC lasers operating at terahertz frequency are considered for the numerical calculation. Our analysis indicates that although PC lasers with different lattice periods possess almost the same photonic band structure, their gain/loss dispersion characteristics are significantly different. The systematic study on gain/loss dispersion characteristics reveals the optimum PC structure to obtain high-performance surface-emitting lasers.

© 2010 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(230.5298) Optical devices : Photonic crystals

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: June 8, 2010
Revised Manuscript: September 14, 2010
Manuscript Accepted: September 17, 2010
Published: November 10, 2010

Citation
Shinichi Takigawa and Susumu Noda, "Mode analysis of two-dimensional photonic crystal terahertz lasers with gain/loss dispersion characteristics," J. Opt. Soc. Am. B 27, 2556-2567 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-12-2556


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, Y. Tanaka, and S. Noda, “GaN photonic-crystal surface-emitting laser at blue-violet wavelengths,” Science 319, 445–447 (2008). [CrossRef]
  2. M. Imada, A. Chutinan, S. Noda, and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65, 195306 (2002). [CrossRef]
  3. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003). [CrossRef] [PubMed]
  4. K. Sakai, E. Miyai, T. Sakaguchi, D. Ohnishi, T. Okano, and S. Noda, “Lasing band-edge identification for a surface-emitting photonic crystal laser,” IEEE J. Sel. Areas Commun. 23, 1335–1340 (2005). [CrossRef]
  5. G. Scalari, L. Sirigu, R. Terazzi, C. Walther, M. I. Amanti, M. Giovannini, N. Hoyler, J. Faist, M. L. Sadowski, H. Beere, D. Ritchie, L. A. Dunbar, and R. Houdre, “Multi-wavelength operation and vertical emission in THz quantum-cascade lasers,” J. Appl. Phys. 101, 081726 (2007). [CrossRef]
  6. L. Sirigu, R. Terazzi, M. I. Amanti, M. Giovannini, and J. Faist, “Terahertz quantum cascade lasers based on two-dimensional photonic crystal resonators,” Opt. Express 16, 5206–5217 (2008). [CrossRef] [PubMed]
  7. O. P. Marshall, V. Apostolopoulos, J. R. Freeman, R. Rungsawang, H. E. Beere, and D. A. Ritchie, “Surface-emitting photonic crystal terahertz quantum cascade lasers,” Appl. Phys. Lett. 93, 171112 (2008). [CrossRef]
  8. A. R. McGurn and A. A. Maradudin, “Photonic band structures of two- and three-dimensional periodic metal or semiconductor arrays,” Phys. Rev. B 48, 17576–17579 (1993). [CrossRef]
  9. V. Kuzmiak, A. A. Maradudin, and F. Pincemin, “Photonic band structures of two-dimensional systems containing metallic components,” Phys. Rev. B 50, 16835–16844 (1994). [CrossRef]
  10. S. Nojima, “Enhancement of optical gain in two-dimensional photonic crystals with active lattice points,” Jpn. J. Appl. Phys., Part 2 37, L565–L567 (1998). [CrossRef]
  11. S. Nojima, “Optical-gain enhancement in two-dimensional active photonic crystals,” J. Appl. Phys. 90, 545–551 (2001). [CrossRef]
  12. M. M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, “Electromagnetic-wave propagation through dispersive and absorptive photonic-band-gap materials,” Phys. Rev. B 49, 11080–11087 (1994). [CrossRef]
  13. V. Yannopapas, A. Modinos, and N. Strfanos, “Optical properties of metallodielectric photonic crystals,” Phys. Rev. B 60, 5359–5365 (1999). [CrossRef]
  14. I. El-Kady, M. M. Sigalas, R. Biswas, K. H. Ho, and C. M. Soukoulis, “Metallic photonic crystals at optical wavelengths,” Phys. Rev. B 62, 15299–15302 (2000). [CrossRef]
  15. S. Brand, R. A. Abram, and M. A. Kaliteevski, “Complex photonic band structure and effective plasma frequency of a two-dimensional array of metal rods,” Phys. Rev. B 75, 035102 (2007). [CrossRef]
  16. I. Vurgaftman and J. R. Meyer, “Design optimization for high-brightness surface-emitting photonic crystal distributed-feedback laser,” IEEE J. Quantum Electron. 39, 689–700 (2003). [CrossRef]
  17. K. Sakai, E. Miyai, and S. Noda, “Two-dimensional coupling wave theory for square-lattice photonic crystal lasers with TM-polarization,” Opt. Express 15, 3981–3990 (2007). [CrossRef] [PubMed]
  18. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B 44, 8565–8571 (1991). [CrossRef]
  19. R. F. Kazarinov and C. H. Henry, “Second-order distributed feedback lasers with mode selection provided by first-order radiation losses,” IEEE J. Quantum Electron. 21, 144–150 (1985). [CrossRef]
  20. B. S. Williams, H. Callebaut, S. Kumar, Q. Hu, and J. L. Reno, “3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation,” Appl. Phys. Lett. 82, 1015–1017 (2003). [CrossRef]
  21. S.-C. Lee and A. Wacker, “Theoretical analysis of spectral gain in a terahertz quantum-cascade laser: Prospects for gain at 1 THz,” Appl. Phys. Lett. 83, 2506–2508 (2003). [CrossRef]
  22. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983). [CrossRef] [PubMed]
  23. R. J. Noll and S. H. Macomber, “Analysis of grating surface emitting laser,” IEEE J. Quantum Electron. 26, 456–466 (1990). [CrossRef]
  24. R. T. Holm, J. W. Gibson, and E. D. Palik, “Infrared reflectance studies of bulk and epitaxial-film n-type GaAs,” J. Appl. Phys. 48, 212–223 (1977). [CrossRef]
  25. S. Adachi, “GaAs, AlAs, and AlxGa1−xAs: Material parameters for use in research and device applications,” J. Appl. Phys. 58, R1–R29 (1985). [CrossRef]
  26. D. Grischkowsky, S. Keiding, M. Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006–2015 (1990). [CrossRef]
  27. C. H. Gooch, Gallium Arsenide Lasers (Wiley-Interscience, 1969), pp. 64–65.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited