OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2568–2579

Dirichlet-to-Neumann map method for analyzing hole arrays in a slab

Lijun Yuan and Ya Yan Lu  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2568-2579 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (416 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rigorous and efficient computational method is developed to calculate transmission and reflection spectra for a finite number of air-hole arrays in a slab, where the incident waves are propagating modes of the slab. The method is a three-dimensional extension of the Dirichlet-to-Neumann (DtN) map method previously developed for ideal two-dimensional photonic crystals which are infinite and invariant in one spatial direction. The method relies on the DtN maps of the unit cells to avoid repeated calculations in identical unit cells. The DtN map of a unit cell is constructed using eigenmode expansions in the vertical direction (perpendicular to the slab) and cylindrical wave expansions in the horizontal directions.

© 2010 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Numerical Approximation and Analysis

Original Manuscript: July 19, 2010
Manuscript Accepted: October 5, 2010
Published: November 10, 2010

Lijun Yuan and Ya Yan Lu, "Dirichlet-to-Neumann map method for analyzing hole arrays in a slab," J. Opt. Soc. Am. B 27, 2568-2579 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton U. Press, 2008).
  2. M. Qiu, “Effective index method for heterostructure-slab-waveguide based two-dimensional photonic crystals,” Appl. Phys. Lett. 81, 1163–1165 (2002). [CrossRef]
  3. C. Ciminelli, F. Peluso, and M. N. Armenise, “Modeling and design of two-dimensional guided-wave photonic band-gap devices,” J. Lightwave Technol. 23, 886–901 (2005). [CrossRef]
  4. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  5. G. Bao, Z. M. Chen, and H. J. Wu, “Adaptive finite-element method for diffraction gratings,” J. Opt. Soc. Am. A 22, 1106–1114 (2005). [CrossRef]
  6. Y. J. Li and J. M. Jin, “Fast full-wave analysis of large-scale three-dimensional photonic crystal devices,” J. Opt. Soc. Am. B 24, 2406–2415 (2007). [CrossRef]
  7. P. A. Martin, Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles (Cambridge U. Press, 2006). [CrossRef]
  8. E. Centeno and D. Felbacq, “Rigorous vector diffraction of electromagnetic waves by bidimensional photonic crystals,” J. Opt. Soc. Am. A 17, 320–327 (2000). [CrossRef]
  9. G. H. Smith, L. C. Botten, R. C. McPhedran, and N. A. Nicorovici, “Cylinder gratings in conical incidence with applications to woodpile structures,” Phys. Rev. E 67, 056620 (2003). [CrossRef]
  10. K. Yasumoto, H. Toyama, and T. Kushta, “Accurate analysis of two-dimensional electromagnetic scattering from multilayered periodic arrays of circular cylinders using lattice sums technique,” IEEE Trans. Antennas Propag. 52, 2603–2611 (2004). [CrossRef]
  11. S. Boscolo and M. Midrio, “Three-dimensional multiple-scattering technique for the analysis of photonic-crystal slabs,” J. Lightwave Technol. 22, 2778–2786 (2004). [CrossRef]
  12. S. Venakides, M. A. Haider, and V. Papanicolaou, “Boundary integral calculations of two-dimensional electromagnetic scattering by photonic crystal Fabry–Perot structures,” SIAM J. Appl. Math. 60, 1686–1706 (2000). [CrossRef]
  13. D. Pissoort, E. Michielssen, D. V. Ginste, and F. Olyslager, “Fast-multipole analysis of electromagnetic scattering by photonic crystal slabs,” J. Lightwave Technol. 25, 2847–2863 (2007). [CrossRef]
  14. J. Yuan and Y. Y. Lu, “Photonic bandgap calculations using Dirichlet-to-Neumann maps,” J. Opt. Soc. Am. A 23, 3217–3222 (2006). [CrossRef]
  15. Y. Huang and Y. Y. Lu, “Scattering from periodic arrays of cylinders by Dirichlet-to-Neumann maps,” J. Lightwave Technol. 24, 3448–3453 (2006). [CrossRef]
  16. Y. Huang and Y. Y. Lu, “Modeling photonic crystals with complex unit cells by Dirichlet-to-Neumann maps,” J. Comput. Math. 25, 337–349 (2007).
  17. Y. Wu and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing interpenetrating cylinder arrays in a triangular lattice,” J. Opt. Soc. Am. B 25, 1466–1473 (2008). [CrossRef]
  18. Y. Wu and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing periodic arrays of cylinders with oblique incident waves,” J. Opt. Soc. Am. B 26, 1442–1449 (2009). [CrossRef]
  19. Y. Wu and Y. Y. Lu, “Dirichlet-to-Neumann map method for analyzing crossed arrays of circular cylinders,” J. Opt. Soc. Am. B 26, 1984–1993 (2009). [CrossRef]
  20. Z. Hu and Y. Y. Lu, “Efficient analysis of photonic crystal devices by Dirichlet-to-Neumann maps,” Opt. Express 16, 17383–17399 (2008). [CrossRef] [PubMed]
  21. Z. Hu and Y. Y. Lu, “Improved Dirichlet-to-Neumann map method for modeling extended photonic crystal devices,” Opt. Quantum Electron. 40, 921–932 (2008). [CrossRef]
  22. C. Vassallo, Optical Waveguide Concepts (Elsevier, 1991).
  23. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  24. W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Microwave Opt. Technol. Lett. 7, 599–604 (1994). [CrossRef]
  25. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings—enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077–1086 (1995). [CrossRef]
  26. N. P. K. Cotter, T. W. Preist, and J. R. Sambles, “Scattering-matrix approach to multilayer diffraction,” J. Opt. Soc. Am. A 12, 1097–1103 (1995). [CrossRef]
  27. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  28. P. Lalanne, “Electromagnetic analysis of photonic crystal waveguides operating above the light cone,” IEEE J. Quantum Electron. 38, 800–804 (2002). [CrossRef]
  29. M. Dems, R. Kotynski, and K. Panajotov, “Plane wave admittance method—a novel approach for determining the electromagnetic modes in photonic structures,” Opt. Express 13, 3196–3207 (2005). [CrossRef] [PubMed]
  30. Y. Y. Lu and J. R. McLaughlin, “The Riccati method for the Helmholtz equation,” J. Acoust. Soc. Am. 100, 1432–1446 (1996). [CrossRef]
  31. Y. Y. Lu, “Some techniques for computing wave propagation in optical waveguides,” Comm. Comp. Phys. 1, 1056–1075 (2006).
  32. L. Yuan and Y. Y. Lu, “An efficient bidirectional propagation method based on Dirichlet-to-Neumann maps,” IEEE Photon. Technol. Lett. 18, 1967–1969 (2006). [CrossRef]
  33. Y. P. Chiou, Y. C. Chiang, and H. C. Chang, “Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices,” J. Lightwave Technol. 18, 243–251 (2000). [CrossRef]
  34. T. Ochiai and K. Sakoda, “Dispersion relation and optical transmittance of a hexagon photonic crystal slab,” Phys. Rev. B 63, 125107 (2001). [CrossRef]
  35. Y. Y. Lu, “Minimizing the discrete reflectivity of perfectly matched layers,” IEEE Photon. Technol. Lett. 18, 487–489 (2006). [CrossRef]
  36. S. Shi, C. Chen, and D. W. Prather, “Plane-wave expansion method for calculating band structure of photonic crystal slabs with perfectly matched layers,” J. Opt. Soc. Am. A 21, 1769–1775 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited