OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2580–2594

Stacked dielectric gratings for sub-wavelength surface field synthesis

C. J. Handmer, C. Martijn de Sterke, R. C. McPhedran, L. C. Botten, M. J. Steel, and A. Rahmani  »View Author Affiliations


JOSA B, Vol. 27, Issue 12, pp. 2580-2594 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002580


View Full Text Article

Enhanced HTML    Acrobat PDF (1107 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A method is developed to enhance the amplitudes of the non-propagating evanescent orders of resonant dielectric gratings. The origin of these resonances is analyzed in detail. The method relies on interactions between stacked gratings with different periods, and so a formalism is developed to model such stacks mathematically. In addition, a theoretical approach is developed to design gratings that enhance or blaze desired orders. These orders, controlled independently by incident fields from different angles, interfere and are optimized to produce steerable sub-Rayleigh field concentrations on a surface. These spots may function as a virtual scanning probe for non-invasive sub-Rayleigh microscopy. Optimization is conducted using a Monte Carlo Markov chain, and spots are generated which are both 1 order of magnitude narrower than the free space Rayleigh limit and robust to noise in the incident fields.

© 2010 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

History
Original Manuscript: June 23, 2010
Revised Manuscript: September 5, 2010
Manuscript Accepted: September 9, 2010
Published: November 11, 2010

Citation
C. J. Handmer, C. Martijn de Sterke, R. C. McPhedran, L. C. Botten, M. J. Steel, and A. Rahmani, "Stacked dielectric gratings for sub-wavelength surface field synthesis," J. Opt. Soc. Am. B 27, 2580-2594 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-12-2580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. W. Wood, “The echelette grating for the infrared,” Philos. Mag. 20, 770–778 (1910).
  2. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 183966 (2000). [CrossRef]
  3. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Exp. 14, 8247–8256 (2006). [CrossRef]
  4. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994). [CrossRef] [PubMed]
  5. X. Zhuang, “Nano-imaging with STORM,” Nat. Photonics 3, 365–367 (2009). [CrossRef] [PubMed]
  6. P. C. Chaumet, K. Belkebir, and A. Sentenac, “Superresolution of three-dimensional optical imaging by use of evanescent waves,” Opt. Lett. 29, 2740–2742 (2004). [CrossRef] [PubMed]
  7. K. Belkebir, P. C. Chaumet, and A. Sentenac, “Superresolution in total internal reflection tomography,” J. Opt. Soc. Am. A 22, 1889–1897 (2005). [CrossRef]
  8. A. Sentenac, P. Chaumet, and K. Belkebir, “Beyond the Rayleigh criterion: Grating assisted far-field optical diffraction tomography,” Phys. Rev. Lett. 97, 243901 (2006). [CrossRef]
  9. G. Maire, F. Drsek, J. Girard, H. Giovannini, A. Talneau, D. Konan, K. Belkebir, P. C. Chaumet, and A. Sentenac, “Experimental demonstration of quantitative imaging beyond Abbe’s limit with optical diffraction tomography,” Phys. Rev. Lett. 102, 213905 (2009). [CrossRef] [PubMed]
  10. C. J. Handmer, C. M. de Sterke, R. C. McPhedran, L. C. Botten, M. J. Steel, and A. Rahmani, “Blazing evanescent grating orders: A spectral approach to beating the Rayleigh limit,” Opt. Lett. 35, 2846–2848 (2010). [CrossRef] [PubMed]
  11. A. Sentenac and P. Chaumet, “Subdiffraction light focusing on a grating substrate,” Phys. Rev. Lett. 101, 013901 (2008). [CrossRef] [PubMed]
  12. L. Li, “New formulation of the Fourier modal method for crossed surface-relief gratings,” J. Opt. Soc. Am. A 14, 2758–2767 (1997). [CrossRef]
  13. G. H. Derrick and R. C. McPhedran, “Coated crossed gratings,” J. Opt. (Paris) 15, 69–81 (1984). [CrossRef]
  14. L. C. Botten, R. C. McPhedran, J. L. Adams, J. Andrewartha, and M. S. Craig, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413–428 (1981). [CrossRef]
  15. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. Andrewartha, “The finitely-conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981). [CrossRef]
  16. L. C. Botten, M. S. Craig, and R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981). [CrossRef]
  17. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity,” J. Opt. Soc. Am. A 10, 2581–2591 (1993). [CrossRef]
  18. S. Campbell, L. C. Botten, R. C. McPhedran, and C. M. de Sterke, “Modal method for classical diffraction by slanted lamellar gratings,” J. Opt. Soc. Am. A 25, 2415–2426 (2008). [CrossRef]
  19. R. de L. Kronig and W. G. Penney, “Quantum mechanics of electrons in crystal lattices,” Proc. R. Soc. London, Ser. A 130, 499–513 (1931). [CrossRef]
  20. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev. 124, 1866–1878 (1961). [CrossRef]
  21. M. C. Hutley, Diffraction Gratings (Academic, 1982).
  22. R. Petit, Electromagnetic Theory of Gratings (Springer, 1980). [CrossRef]
  23. E. Popov, L. Mashev, and D. Maystre, “Theoretical study of the anomalies of coated dielectric gratings,” J. Mod. Opt. 33, 607–619 (1986). [CrossRef]
  24. E. Abbe, “Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung,” Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413–418 (1873). [CrossRef]
  25. R. Gordon, A. G. Brolo, D. Sinton, and K. L. Kavanagh, “Resonant optical transmission through hole-arrays in metal films: Physics and applications,” Laser Photonics Rev. 4, 311–335 (2010). [CrossRef]
  26. A. Roberts and R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” Opt. Acta 34, 511–538 (1988).
  27. J. B. Andersen and V. V. Solodukhov, “Field behavior near a dielectric wedge,” IEEE Trans. Antennas Propag. 26, 598–602 (1978). [CrossRef]
  28. P. Gregory, Bayesian Logical Data Analysis for the Physical Sciences (Cambridge U. Press, 2005). [CrossRef]
  29. F. M. Huang, Y. Chen, F. J. G. de Abajo, and N. I. Zheludev, “Optical superresolution through super-oscillations,” J. Opt. A, Pure Appl. Opt. 9, S285–S288 (2007). [CrossRef]
  30. M. Vellekoop and A. Mosk, “Universal optimal transmission of light through disordered materials,” Phys. Rev. Lett. 101, 120601 (2008). [CrossRef] [PubMed]
  31. E. van Putten, I. Vellekoop, and A. Mosk, “Spatial amplitude and phase modulation using commercial twisted nematic LCDs,” Appl. Opt. 47, 2076–2081 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited