OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2595–2604

Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays

Liping Wang and Zhuomin M. Zhang  »View Author Affiliations


JOSA B, Vol. 27, Issue 12, pp. 2595-2604 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002595


View Full Text Article

Enhanced HTML    Acrobat PDF (1404 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent studies show that magnetic polaritons (MPs) are responsible for the extraordinary optical transmission in subwavelength periodic structures. However, the role of MP in double-layer nanoslit arrays has not been fully understood. This paper elucidates how MPs influence the radiative properties of nanoslit arrays at both normal and oblique incidences using the rigorous coupled-wave analysis. The existence of MPs is further confirmed by an equivalent L C circuit model. The effects of geometric parameters and lateral displacement on the resonance conditions are also investigated, and possible ways of tailoring the radiative properties of nanostructures for energy-harvesting applications are suggested.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.4760) Materials : Optical properties
(240.5420) Optics at surfaces : Polaritons
(260.5740) Physical optics : Resonance
(160.3918) Materials : Metamaterials

ToC Category:
Materials

History
Original Manuscript: June 1, 2010
Revised Manuscript: September 23, 2010
Manuscript Accepted: October 5, 2010
Published: November 11, 2010

Citation
Liping Wang and Zhuomin M. Zhang, "Effect of magnetic polaritons on the radiative properties of double-layer nanoslit arrays," J. Opt. Soc. Am. B 27, 2595-2604 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-12-2595


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  2. Z. M. Zhang, B. K. Tsai, and G. Machin, Radiometric Temperature Measurements: II. Applications (Elsevier, 2010).
  3. J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett. 83, 2845–2848 (1999). [CrossRef]
  4. F. I. Baida and D. Van Labeke, “Light transmission by subwavelength annular aperture arrays in metallic films,” Opt. Commun. 209, 17–22 (2002). [CrossRef]
  5. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297, 820–822 (2002). [CrossRef] [PubMed]
  6. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391, 667–669 (1998). [CrossRef]
  7. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324, 549–551 (1986). [CrossRef]
  8. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416, 61–64 (2002). [CrossRef] [PubMed]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4, 1085–1088 (2004). [CrossRef]
  10. P. Yeh, “New optical-model for wire grid polarizers,” Opt. Commun. 26, 289–292 (1978). [CrossRef]
  11. Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface plasmon interference nanolithography,” Nano Lett. 5, 957–961 (2005). [CrossRef] [PubMed]
  12. B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Confinement of infrared radiation to nanometer scales through metallic slit arrays,” J. Quant. Spectrosc. Radiat. Transf. 109, 608–619 (2008). [CrossRef]
  13. B. J. Lee, Y. B. Chen, and Z. M. Zhang, “Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared,” J. Comput. Theor. Nanosci. 5, 201–213 (2008). [CrossRef]
  14. R. Ortuno, C. Garcia-Meca, F. J. Rodriguez-Fortuno, J. Marti, and A. Martinez, “Role of surface plasmon polaritons on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79, 075425 (2009). [CrossRef]
  15. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, “Holey metal films: From extraordinary transmission to negative-index behavior,” Phys. Rev. B 80, 165431 (2009). [CrossRef]
  16. T. Li, H. Liu, F. M. Wang, Z. G. Dong, S. N. Zhu, and X. Zhang, “Coupling effect of magnetic polariton in perforated metal/dielectric layered metamaterials and its influence on negative refraction transmission,” Opt. Express 14, 11155–11163 (2006). [CrossRef] [PubMed]
  17. T. Li, J. Q. Li, F. M. Wang, Q. J. Wang, H. Liu, S. N. Zhu, and Y. Y. Zhu, “Exploring magnetic plasmon polaritons in optical transmission through hole arrays perforated in trilayer structures,” Appl. Phys. Lett. 90, 251112 (2007). [CrossRef]
  18. T. Li, S. M. Wang, H. Liu, J. Q. Li, F. M. Wang, S. N. Zhu, and X. Zhang, “Dispersion of magnetic plasmon polaritons in perforated trilayer metamaterials,” J. Appl. Phys. 103, 023104 (2008). [CrossRef]
  19. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1, 41–48 (2007). [CrossRef]
  20. L. P. Wang and Z. M. Zhang, “Resonance transmission or absorption in deep gratings explained by magnetic polaritons,” Appl. Phys. Lett. 95, 111904 (2009). [CrossRef]
  21. B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express 16, 11328–11336 (2008). [CrossRef] [PubMed]
  22. H. B. Chan, Z. Marcet, K. Woo, D. B. Tanner, D. W. Carr, J. E. Bower, R. A. Cirelli, E. Ferry, F. Klemens, J. Miner, C. S. Pai, and J. A. Taylor, “Optical transmission through double-layer metallic subwavelength slit arrays,” Opt. Lett. 31, 516–518 (2006). [CrossRef] [PubMed]
  23. C. Cheng, J. Chen, D. J. Shi, Q. Y. Wu, F. F. Ren, J. Xu, Y. X. Fan, J. P. Ding, and H. T. Wang, “Physical mechanism of extraordinary electromagnetic transmission in dual-metallic grating structures,” Phys. Rev. B 78, 075406 (2008). [CrossRef]
  24. G. Shvets and Y. A. Urzhumov, “Negative index meta-materials based on two-dimensional metallic structures,” J. Opt. A, Pure Appl. Opt. 8, S122–S130 (2006). [CrossRef]
  25. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  26. J. F. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, “Unifying approach to left-handed material design,” Opt. Lett. 31, 3620–3622 (2006). [CrossRef] [PubMed]
  27. L. Solymar and E. Shamonina, Waves in Metamaterials (Oxford University Press, 2009).
  28. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, “Saturation of the magnetic response of split-ring resonators at optical frequencies,” Phys. Rev. Lett. 95, 223902 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited