OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2612–2619

Multimode metal-lined capillaries for Raman collection and sensing

Michael P. Buric, Kevin P. Chen, Joel Falk, and Steven D. Woodruff  »View Author Affiliations


JOSA B, Vol. 27, Issue 12, pp. 2612-2619 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002612


View Full Text Article

Enhanced HTML    Acrobat PDF (576 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Reflective metal-lined capillary waveguides are useful for laser-power delivery or for collecting scattered light in sensing applications. We theoretically examine the multimode propagation of polarized light in large-diameter, metallized, capillary waveguides using a new perturbation technique valid for all waveguide modes. This modeling permits prediction of the collection efficiency of Raman or fluorescent light produced in the waveguide at all angles. These theoretical results are supported by measuring the intensity and angular distribution of collected scattered gas–Raman Stokes power.

© 2010 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(300.6450) Spectroscopy : Spectroscopy, Raman
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Remote Sensing and Sensors

History
Original Manuscript: July 19, 2010
Revised Manuscript: September 24, 2010
Manuscript Accepted: October 12, 2010
Published: November 11, 2010

Citation
Michael P. Buric, Kevin P. Chen, Joel Falk, and Steven D. Woodruff, "Multimode metal-lined capillaries for Raman collection and sensing," J. Opt. Soc. Am. B 27, 2612-2619 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-12-2612


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Abe, Y. Matsuura, Y. Shi, Y. Wang, H. Uyama, and M. Miyagi, “Polymer-coated hollow fiber for CO2 laser delivery,” Opt. Lett. 23, 89–90 (1998). [CrossRef]
  2. Y. Abe, Y. Shi, Y. Matsuura, and M. Mitsunoba, “Flexible small-bore hollow fibers with an inner polymer coating,” Opt. Lett. 25, 150–152 (2000). [CrossRef]
  3. Y. Komachi and H. Sato, “Raman probe using a single hollow waveguide,” Opt. Lett. 30, 2942–2944 (2005). [CrossRef] [PubMed]
  4. Y. Matsuura, K. Hanamoto, S. Sato, and M. Miyagi, “Hollow-fiber delivery of high-power pulsed Nd:YAG laser light,” Opt. Lett. 23, 1858–1860 (1998). [CrossRef]
  5. Y. Matsuura, M. Saito, M. Miyagi, and A. Hongo, “Loss characteristics of circular hollow waveguides for incoherent infrared light,” J. Opt. Soc. Am. A 6, 423–427 (1989). [CrossRef]
  6. Y. Matsuura, G. Takada, T. Yamamoto, Y. Shi, and M. Mitsunobu, “Hollow fibers for delivery of harmonic pulses of Q-switched Nd:YAG lasers,” Appl. Opt. 41, 442–445 (2002). [CrossRef] [PubMed]
  7. Y. Matsuura, Y. Shi, Y. Abe, M. Yaegashi, G. Takada, S. Mohri, and M. Miyagi, “Infrared-laser delivery system based on polymer-coated hollow fibers,” J. Opt. Laser Tech. 33, 279–283 (2001). [CrossRef]
  8. Y. Matsuura and M. Miyagi, “Hollow optical fibers for ultraviolet and vacuum ultraviolet light,” IEEE J. Sel. Top. Quantum Electron. 10, 1430–1434 (2004). [CrossRef]
  9. M. P. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Metal-lined capillaries for efficient Raman gas sensing,” Conference on Lasers and Electro-Optics (Optical Society of America, 2010), paper CFA5.
  10. M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity gas detection by spontaneous Raman scattering,” Appl. Opt. 48, 4424–4429 (2009). [CrossRef] [PubMed]
  11. M. Buric, K. Chen, J. Falk, and S. Woodruff, “Enhanced spontaneous Raman scattering and gas composition analysis using a photonic crystal fiber,” Appl. Opt. 47, 4255–4261 (2008). [CrossRef] [PubMed]
  12. M. Buric, K. P. Chen, J. Falk, and S. D. Woodruff, “Improved sensitivity spontaneous Raman scattering multi-gas sensor,” Conference on Lasers and Electro Optics (Optical Society of America, 2009). Available from IEEE Xplore Lasers and Electro-Optics, 2009. CLEO 2009.
  13. Doko Engineering, capillary waveguide specifications. Downloaded from http://do-ko.jp/specs.html (June 9, 2010).
  14. S. D. Schwab and R. L. McCreery, “Remote, long-pathlength cell for high-sensitivity Raman spectroscopy,” Appl. Spectrosc. 41, 126–130 (1987). [CrossRef]
  15. M. Buric, K. Chen, J. Falk, R. Velez, and S. Woodruff, “Raman sensing of fuel gases using a reflective coating capillary optical fiber,” SPIE Symposium on Defense Security and Sensing (SPIE, 2009).
  16. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1942). p. 524.
  17. E. Marcatili and R. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).
  18. J. P. Crenn, “Optical study of the EH11 mode in a hollow circular oversized waveguide and Gaussian approximation of the far-field pattern,” Appl. Opt. 23, 3428–3433 (1984). [CrossRef] [PubMed]
  19. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19, 211–217 (2000). [CrossRef]
  20. M. Miyagi and S. Kawakami, “Design theory of dielectric-coated circular metallic waveguides for infrared transmission,” J. Lightwave Technol. LT-2, 116–126 (1984). [CrossRef]
  21. P. Bhardwaj, O. J. Gregory, C. Morrow, and K. Burbank, “Performance of dielectric-coated monolithic hollow metallic waveguide,” Mater. Lett. 16, 150–156 (1993). [CrossRef]
  22. Y. Matsuura andM. Miyagi, “Er:YAG, CO, and CO2 laser delivery by ZnS-coated Ag hollow waveguides,” Appl. Opt. 32, 6598–6601 (1993). [CrossRef]
  23. Y. Shi, Y. Wang, Y. Abe, Y. Matsuura, M. Miyagi, S. Sato, M. Taniwaki, and H. Uyama, “Cyclic olefin polymer coated silver hollow glass waveguides for the infrared,” Appl. Opt. 37, 7758–7762 (1998). [CrossRef]
  24. J. A. Harrington, Infrared Fibers and Their Applications (SPIE Press, 2004). [CrossRef]
  25. E. Snitzer, “Dielectric waveguide modes,” J. Opt. Soc. Am. 51, 491–498 (1961). [CrossRef]
  26. R. K. Nubling and J. A. Harrington, “Launch conditions and mode coupling in hollow-glass waveguides,” Opt. Eng. 37, 2454–2458 (1998). [CrossRef]
  27. M.Abramowitz and I.A.Stegun, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1972), pp. 370–374.
  28. Y. W. Shi, K. Ito, Y. Matsuura, and M. Miyagi, “Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared,” Opt. Lett. 30, 2867–2869 (2005). [CrossRef] [PubMed]
  29. G. Turrell and J. Corset, Raman Microscopy, Developments and Applications (Elsevier, 1996).
  30. Semrock beamsplitter data sheet. Downloaded from http://www.semrock.com/Catalog/RamanEdgeDichroic.htm (July 23, 2008).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited