OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2632–2638

Imaging gigahertz surface acoustic waves through the photoelastic effect

Taiki Saito, Osamu Matsuda, Motonobu Tomoda, and Oliver B. Wright  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2632-2638 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (316 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents experiments and in-depth analysis of the imaging of surface acoustic waves by means of the photoelastic effect. Gigahertz surface acoustic waves, generated by optical pump pulses in a thin gold film on a glass substrate, are imaged in the time domain by monitoring ultrafast changes in optical reflectivity. We demonstrate how images of the in-plane acoustic shear strain component can be obtained by measurements with two different optical probe pulse polarizations incident from the substrate side.

© 2010 Optical Society of America

OCIS Codes
(110.5120) Imaging systems : Photoacoustic imaging
(110.7170) Imaging systems : Ultrasound
(240.6690) Optics at surfaces : Surface waves
(260.1440) Physical optics : Birefringence
(100.0118) Image processing : Imaging ultrafast phenomena
(290.5825) Scattering : Scattering theory

ToC Category:
Imaging Systems

Original Manuscript: August 12, 2010
Revised Manuscript: October 12, 2010
Manuscript Accepted: October 13, 2010
Published: November 11, 2010

Taiki Saito, Osamu Matsuda, Motonobu Tomoda, and Oliver B. Wright, "Imaging gigahertz surface acoustic waves through the photoelastic effect," J. Opt. Soc. Am. B 27, 2632-2638 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Adler, A. Korpel, and P. Desmares, “An instrument for making surface waves visible,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 15, 157–161 (1968).
  2. J. V. Knuuttila, P. T. Tikka, and M. M. Salomaa, “Scanning Michelson interferometer for imaging surface acoustic wave fields,” Opt. Lett. 25, 613–615 (2000). [CrossRef]
  3. J. E. Graebner, B. P. Barber, P. L. Gammel, and D. S. Greywall, “Dynamic visualization of subangstrom high-frequency surface vibrations,” Appl. Phys. Lett. 78, 159–161 (2001). [CrossRef]
  4. J. L. Blackshire, S. Sathish, B. D. Duncan, and M. Millard, “Real-time, frequency-translated holographic visualization of surface acoustic wave interactions with surface-breaking defects,” Opt. Lett. 27, 1025–1027 (2002). [CrossRef]
  5. A. Miyamoto, S. Matsuda, S. Wakana, and A. Ito, “Optical observation technique for SH-type surface acoustic wave,” Electron. Commun. Jpn., Part 2: Electron. 87, 1295–1301 (2004). [CrossRef]
  6. K. Kokkonen and M. Kaivola, “Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations,” Appl. Phys. Lett. 92, 063502 (2008). [CrossRef]
  7. T. Fujikura, O. Matsuda, D. M. Profunser, O. B. Wright, J. Masson, and S. Ballandras, “Real-time imaging of acoustic waves on a bulk acoustic resonator,” Appl. Phys. Lett. 93, 261101 (2008). [CrossRef]
  8. M. Clark, S. D. Sharples, and M. G. Somekh, “Diffractive acoustic elements for laser ultrasonics,” J. Acoust. Soc. Am. 107, 3179–3185 (2000). [CrossRef] [PubMed]
  9. Y. Sugawara, O. B. Wright, O. Matsuda, M. Takigahira, Y. Tanaka, S. Tamura, and V. E. Gusev, “Watching ripples on crystals,” Phys. Rev. Lett. 88, 185504 (2002). [CrossRef] [PubMed]
  10. J. A. Scales and A. E. Malcolm, “Laser characterization of ultrasonic wave propagation in random media,” Phys. Rev. E 67, 046618 (2003). [CrossRef]
  11. A. A. Maznev, A. M. Lomonosov, P. Hess, and A. A. Kolomenskii, “Anisotropic effects in surface acoustic wave propagation from a point source in a crystal,” Eur. Phys. J. B 35, 429–439 (2003). [CrossRef]
  12. T. Tachizaki, T. Muroya, O. Matsuda, Y. Sugawara, D. H. Hurley, and O. B. Wright, “Scanning ultrafast sagnac interferometry for imaging two-dimensional surface wave propagation,” Rev. Sci. Instrum. 77, 043713 (2006). [CrossRef]
  13. D. M. Profunser, O. B. Wright, and O. Matsuda, “Imaging ripples on phononic crystals reveals acoustic band structure and Bloch harmonics,” Phys. Rev. Lett. 97, 055502 (2006). [CrossRef] [PubMed]
  14. D. M. Profunser, E. Muramoto, O. Matsuda, and O. B. Wright, “Dynamic visualization of surface acoustic waves on a two-dimensional phononic crystal,” Phys. Rev. B 80, 014301 (2009). [CrossRef]
  15. M. M. Frocht, Photoelasticity (Wiley, 1957), Vols. 1 and 2.
  16. C. P. Burger, “Photoelasticity,” in Handbook on Experimental Mechanics (Second Revised Edition), A.S.Kobayashi, ed. (VCH, 1993), Chap. 5, pp. 165–266.
  17. W. F. Riley and J. W. Dally, “A photoelastic analysis of stress wave propagation in a layered model,” Geophysics 31, 881–899 (1966). [CrossRef]
  18. J. W. Dally, “An introduction to dynamic photoelasticity,” Exp. Mech. 20, 409–416 (1980). [CrossRef]
  19. Y. H. Nam and S. S. Lee, “A quantitative evaluation of elastic wave in solid by strobscopic photoelasticity,” J. Sound Vib. 259, 1199–1207 (2003). [CrossRef]
  20. W.-C. Wang and Y.-H. Tsai, “Digital dynamic photoelastic and numerical stress analyses of a strip,” J. Vib. Control 12, 927–938 (2006). [CrossRef]
  21. R. Hayasi, Y. Masuda, S. Hashimoto, and S. Kuriyama, “Analysis of geometric effects on stress wave propagation in epoxy resins of plate-like structure by dynamic photoelasticity combined with strain gauge,” Jpn. J. Appl. Phys. 47, 4676–4681 (2008). [CrossRef]
  22. H. Yamazaki, O. Matsuda, and O. B. Wright, “Surface phonon imaging through the photoelastic effect,” Phys. Status Solidi C 1, 2991–2994 (2004). [CrossRef]
  23. M. Garfinkel, J. J. Tiemann, and W. E. Engeler, “Piezoreflectivity of the noble metals,” Phys. Rev. 148, 695–706 (1966). [CrossRef]
  24. This is supported by measurements made by probing from the film side of our sample, showing a response ∼10 times smaller. Other measurements also indicate a negligible photoelastic coefficient P12 at our probe wavelength. The photoelastic constant of fused silica in the visible at this wavelength is approximately P12=−1.3.
  25. G. W. C. Kaye and T. H. Laby, Tables of Physical and Chemical Constants, 16th ed. (Longman, 1995).
  26. The SSLW ring in fact overlaps in Fig. with a weaker second RW ring, but the former ring dominates.
  27. C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, “Surface generation and detection of phonons by picosecond light pulses,” Phys. Rev. B 34, 4129–4138 (1986). [CrossRef]
  28. B. Perrin, B. Bonello, J. C. Jeannet, and E. Romatet, “Interferometric detection of hypersound waves in modulated structures,” Prog. Nat. Sci. S6, S444–S448 (1996).
  29. V. E. Gusev, “Laser hypersonics in fundamental and applied research,” Acust. Acta Acust. 82, S37–S45 (1996).
  30. O. Matsuda and O. B. Wright, “Reflection and transmission of light in multilayers perturbed by picosecond strain pulse propagation,” J. Opt. Soc. Am. B 19, 3028–3041 (2002). [CrossRef]
  31. O. Matsuda, O. B. Wright, D. H. Hurley, V. E. Gusev, and K. Shimizu, “Coherent shear phonon generation and detection with picosecond laser acoustics,” Phys. Rev. B 77, 224110 (2008). [CrossRef]
  32. N. Chigarev, C. Rossignol, and B. Audoin, “Surface displacement measured by beam distortion detection technique: Application to picosecond ultrasonics,” Rev. Sci. Instrum. 77, 114901 (2006). [CrossRef]
  33. C. Matteï, X. Jia, and G. Quentin, “Measurement of Rayleigh wave strains inside a transparent solid by optical interferometry,” Acta Acust. 2, 65–67 (1994).
  34. M. Tomoda, O. Matsuda, and O. B. Wright, “Tomographic reconstruction of picosecond acoustic strain propagation,” Appl. Phys. Lett. 90, 041114 (2007). [CrossRef]
  35. D. H. Hurley and O. B. Wright, “Detection of ultrafast phenomena by use of a modified sagnac interferometer,” Opt. Lett. 24, 1305–1307 (1999). [CrossRef]
  36. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38, 5149–5153 (1967). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited