OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2654–2664

A scheme comparison of Autler–Townes based slow light in inhomogeneously broadened quantum dot media

Per Lunnemann and Jesper Mørk  »View Author Affiliations


JOSA B, Vol. 27, Issue 12, pp. 2654-2664 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002654


View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a method to achieve significant optical signal delays exploiting the effect of Autler–Townes splitting (ATS) in an inhomogeneously broadened quantum dot medium. The absorption and slowdown effects are compared for three schemes i.e., Ξ, V, and Λ, corresponding to different excitation configurations. Qualitative differences of the V scheme compared to the Ξ and Λ schemes are found, which show that features of (ATS) are only revealed in the V scheme. The underlying physical mechanisms causing this discrepancy are analyzed and discussed. Finally we compare field propagation calculations of the schemes showing significantly larger achievable signal delays for the V scheme despite finite absorption of the coupling field. This opens the possibility for using waveguide structures for both coupling and probe fields, thus significantly increasing the achievable signal delays.

© 2010 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(160.6000) Materials : Semiconductor materials
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(200.4490) Optics in computing : Optical buffers
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

History
Original Manuscript: August 20, 2010
Manuscript Accepted: September 18, 2010
Published: November 15, 2010

Citation
Per Lunnemann and Jesper Mørk, "A scheme comparison of Autler–Townes based slow light in inhomogeneously broadened quantum dot media," J. Opt. Soc. Am. B 27, 2654-2664 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-12-2654


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. H. Autler and C. H. Townes, “Stark effect in rapidly varying fields,” Phys. Rev. 100, 703–722 (1955). [CrossRef]
  2. M. Fleischhauer, A. Imamoglu, and J. P. Marangos, “Electromagnetically induced transparency: Optics in coherent media,” Rev. Mod. Phys. 77, 633–673 (2005). [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 meters per second in an ultracold atomic gas,” Nature 397, 594–598 (1999). [CrossRef]
  4. C. Liu, Z. Dutton, C. Behroozi, and L. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001). [CrossRef] [PubMed]
  5. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001). [CrossRef] [PubMed]
  6. M. Bajcsy, A. Zibrov, and M. Lukin, “Stationary pulses of light in an atomic medium,” Nature 426, 638–641 (2003). [CrossRef] [PubMed]
  7. M. Eisaman, A. Andre, F. Massou, M. Fleischhauer, A. Zibrov, and M. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438, 837–841 (2005). [CrossRef] [PubMed]
  8. N. S. Ginsberg, S. R. Garner, and L. V. Hau, “Coherent control of optical information with matter wave dynamics,” Nature 445, 623–626 (2007). [CrossRef] [PubMed]
  9. J.B.Khurgin and R.S.Tucker, eds., Slow Light-Science and Applications (Taylor & Francis, 2009).
  10. R. W. Boyd and D. J. Gauthier, “Controlling the velocity of light pulses,” Science 326, 1074–1077 (2009). [CrossRef] [PubMed]
  11. J. Mørk, F. Öhman, M. van der Poel, Y. Chen, P. Lunnemann, and K. Yvind, “Slow and fast light: Controlling the speed of light using semiconductor waveguides,” Laser Photonics Rev. 3, 30–44 (2009). [CrossRef]
  12. P.Michler, ed., Single Quantum Dots: Fundamentals, Applications, and New Concepts, Vol. 90 of Topics in Applied Physics (Springer-Verlag, 2003).
  13. J. Kim, S. L. Chuang, P. C. Ku, and C. J. Chang-Hasnain, “Slow light using semiconductor quantum dots,” J. Phys. Condens. Matter 16, S3727–S3735 (2004). [CrossRef]
  14. C. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-l. Chuang, “Variable optical buffer using slow light in semiconductor nanostructures,” in Proc. IEEE 91, 1884–1897 (2003). [CrossRef]
  15. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. L. Sellin, D. Ouyang, and D. Bimberg, “Ultralong dephasing time in InGaAs quantum dots,” Phys. Rev. Lett. 87, 157401 (2001). [CrossRef] [PubMed]
  16. D. Birkedal, K. Leosson, and J. M. Hvam, “Long lived coherence in self-assembled quantum dots,” Phys. Rev. Lett. 87, 227401 (2001). [CrossRef] [PubMed]
  17. R. Heitz, I. Mukhametzanov, H. Born, M. Grundmann, A. Hoffmann, A. Madhukar, and D. Bimberg, “Hot carrier relaxation in InAs/GaAs quantum dots,” Physica B 272, 8–11 (1999). [CrossRef]
  18. R. Heitz, H. Born, F. Guffarth, O. Stier, A. Schliwa, A. Hoffmann, and D. Bimberg, “Existence of a phonon bottleneck for excitons in quantum dots,” Phys. Rev. B 64, 241305 (2001). [CrossRef]
  19. P. Borri, S. Schneider, W. Langbein, and D. Bimberg, “Ultrafast carrier dynamics in InGaAs quantum dot materials and devices,” J. Opt. A, Pure Appl. Opt. 8, S33–S46 (2006). [CrossRef]
  20. Y. Nakata, Y. Sugiyama, and M. Sugawara, Self-Assembled InGaAs/GaAs Quantum dots (Academic, 1999), Chap. 2, pp. 117–154. [CrossRef]
  21. P. Lunnemann and J. Mørk, “Reducing the impact of inhomogeneous broadening on quantum dot based electromagnetically induced transparency,” Appl. Phys. Lett. 94, 071108 (2009). [CrossRef]
  22. M. Kroner, C. Lux, S. Seidl, A. W. Holleitner, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Rabi splitting and ac-stark shift of a charged exciton,” Appl. Phys. Lett. 92, 031108 (2008). [CrossRef]
  23. D. Gammon, E. S. Snow, B. V. Shanabrook, D. S. Katzer, and D. Park, “Fine structure splitting in the optical spectra of single GaAs quantum dots,” Phys. Rev. Lett. 76, 3005–3008 (1996). [CrossRef] [PubMed]
  24. S. Marcinkevičius, A. Gushterov, and J. P. Reithmaier, “Transient electromagnetically induced transparency in self-assembled quantum dots,” Appl. Phys. Lett. 92, 041113 (2008). [CrossRef]
  25. X. Xu, B. Sun, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, and L. J. Sham, “Coherent optical spectroscopy of a strongly driven quantum dot,” Science 317, 929–932 (2007). [CrossRef] [PubMed]
  26. G. Jundt, L. Robledo, A. Hogele, S. Falt, and A. Imamoglu, “Observation of dressed excitonic states in a single quantum dot,” Phys. Rev. Lett. 100, 177401 (2008). [CrossRef] [PubMed]
  27. A. Muller, W. Fang, J. Lawall, and G. S. Solomon, “Emission spectrum of a dressed exciton-biexciton complex in a semiconductor quantum dot,” Phys. Rev. Lett. 101, 027401 (2008). [CrossRef] [PubMed]
  28. B. D. Gerardot, D. Brunner, P. A. Dalgarno, K. Karrai, A. Badolato, P. M. Petroff, and R. J. Warburton, “Dressed excitonic states and quantum interference in a three-level quantum dot ladder system,” New J. Phys. 11, 013028 (2009). [CrossRef]
  29. G. S. Agarwal, “Nature of the quantum interference in electromagnetic-field-induced control of absorption,” Phys. Rev. A 55, 2467–2470 (1997). [CrossRef]
  30. R. Seguin, A. Schliwa, S. Rodt, K. Pötschke, U. W. Pohl, and D. Bimberg, “Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots,” Phys. Rev. Lett. 95, 257402 (2005). [CrossRef] [PubMed]
  31. L. Coldren and S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1997), Vol. 36.
  32. H. Haug and S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semiconductors, 4th ed. (World Scientific, 2004).
  33. O. Stier, M. Grundmann, and D. Bimberg, “Electronic and optical properties of strained quantum dots modeled by 8-band k⋅p theory,” Phys. Rev. B 59, 5688–5701 (1999). [CrossRef]
  34. D. Barettin, J. Houmark, B. Lassen, M. Willatzen, T. R. Nielsen, J. Mørk, and A.-P. Jauho, “Optical properties and optimization of electromagnetically induced transparency in strained InAs/GaAs quantum dot structures,” Phys. Rev. B 80, 235304 (2009). [CrossRef]
  35. R. Heitz, I. Mukhametzhanov, O. Stier, A. Madhukar, and D. Bimberg, “Enhanced polar exciton-lo-phonon interaction in quantum dots,” Phys. Rev. Lett. 83, 4654–4657 (1999). [CrossRef]
  36. B. Bransden and C. Joachain, Physics of Atoms and Molecules, 2nd ed. (Prentice Hall, 2003).
  37. T. Markussen, P. Kristensen, B. Tromborg, T. W. Berg, and J. Mørk, “Influence of wetting-layer wave functions on phonon-mediated carrier capture into self-assembled quantum dots,” Phys. Rev. B 74, 195342 (2006). [CrossRef]
  38. W. Langbein, P. Borri, U. Woggon, V. Stavarache, D. Reuter, and A. D. Wieck, “Radiatively limited dephasing in InAs quantum dots,” Phys. Rev. B 70, 033301 (2004). [CrossRef]
  39. P. Borri, W. Langbein, J. Mørk, J. M. Hvam, F. Heinrichsdorff, M.-H. Mao, and D. Bimberg, “Dephasing in InAs/GaAs quantum dots,” Phys. Rev. B 60, 7784–7787 (1999). [CrossRef]
  40. E. A. Zibik, T. Grange, B. A. Carpenter, N. E. Porter, R. Ferreira, G. Bastard, D. Stehr, S. Winner, M. Helm, H. Y. Liu, M. S. Skolnick, and L. R. Wilson, “Long lifetimes of quantum-dot intersublevel transitions in the terahertz range,” Nature Mater. 8, 803–807 (2009). [CrossRef]
  41. M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer, “Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots,” Phys. Rev. B 65, 195315 (2002). [CrossRef]
  42. S. Rodt, A. Schliwa, K. Pötschke, F. Guffarth, and D. Bimberg, “Correlation of structural and few-particle properties of self-organized InAs/GaAs quantum dots,” Phys. Rev. B 71, 155325 (2005). [CrossRef]
  43. M. C. Phillips and H. Wang, “Exciton spin coherence and electromagnetically induced transparency in the transient optical response of GaAs quantum wells,” Phys. Rev. B 69, 115337 (2004). [CrossRef]
  44. P. K. Nielsen, H. Thyrrestrup, J. Mørk, and B. Tromborg, “Numerical investigation of electromagnetically induced transparency in a quantum dot structure,” Opt. Express 15, 6396–6408 (2007). [CrossRef] [PubMed]
  45. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  46. G. Agrawal and N. Olsson, “Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers,” IEEE J. Quantum Electron. 25, 2297–2306 (1989). [CrossRef]
  47. J. Tidström, P. Jänes, and L. M. Andersson, “Delay-bandwidth product of electromagnetically induced transparency media,” Phys. Rev. A 75, 053803 (2007). [CrossRef]
  48. Z. Shi and R. W. Boyd, “Discretely tunable optical packet delays using channelized slow light,” Phys. Rev. A 79, 013805 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited