OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2707–2713

A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities

Xian Mei, Xuguang Huang, Jin Tao, Jiahu Zhu, Yunjin Zhu, and Xiaopin Jin  »View Author Affiliations


JOSA B, Vol. 27, Issue 12, pp. 2707-2713 (2010)
http://dx.doi.org/10.1364/JOSAB.27.002707


View Full Text Article

Enhanced HTML    Acrobat PDF (722 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A structure based on plasmonic metal-dielectric-metal (MDM) side-coupled cavities for optical wavelength demultiplexing is proposed and numerically simulated. The structure consists of several side-coupled resonant cavities with different lengths, which plays roles in selecting different wavelength transmission bands. Both analytical and simulation results reveal that the selected demultiplexing wavelength of each port has linear and nonlinear relationships with the length of the corresponding MDM side-coupled cavity, overlap length, and gap width.

© 2010 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: July 15, 2010
Revised Manuscript: October 5, 2010
Manuscript Accepted: October 11, 2010
Published: November 18, 2010

Citation
Xian Mei, Xuguang Huang, Jin Tao, Jiahu Zhu, Yunjin Zhu, and Xiaopin Jin, "A wavelength demultiplexing structure based on plasmonic MDM side-coupled cavities," J. Opt. Soc. Am. B 27, 2707-2713 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-12-2707


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006). [CrossRef] [PubMed]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9, 20–27 (2006). [CrossRef]
  4. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, R16356 (2000). [CrossRef]
  5. S. A. Maier, P. G. Kik, and H. A. Atwater, “Optical pulse propagation in metal nanoparticle chain waveguides,” Phys. Rev. B 67, 205402 (2003). [CrossRef]
  6. J. Krenn and J.-C. Weeber, “Surface plasmon polaritons in metal stripes and wires,” Philos. Trans. R. Soc. London, Ser. A 362, 739–756 (2004). [CrossRef]
  7. K. Leosson, T. Nikolajsen, A. Boltasseva, and S. I. Bozhevolnyi, “Long-range surface plasmon polariton nanowire waveguides for device applications,” Opt. Express 14, 314–319 (2006). [CrossRef] [PubMed]
  8. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005). [CrossRef]
  9. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005). [CrossRef] [PubMed]
  10. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006). [CrossRef] [PubMed]
  11. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13, 6645–6650 (2005). [CrossRef] [PubMed]
  12. I. Breukelaar and P. Berini, “Long-range surface plasmon polariton mode cutoff and radiation in slab waveguide,” J. Opt. Soc. Am. A 23, 1971–1977 (2006). [CrossRef]
  13. G. Veronis and S. Fan, “Modes of subwavelength plasmonic slot waveguides,” J. Lightwave Technol. 25, 2511–2521 (2007). [CrossRef]
  14. F. I. Baida, A. Belkhir, D. V. Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74, 205419 (2006). [CrossRef]
  15. H. Gao, H. Shi, C. Wang, C. Du, X. Luo, Q. Deng, Y. Lv, X. Lin, and H. Yao, “Surface plasmon polariton propagation and combination in Y-shaped metallic channels,” Opt. Express 13, 10795–10800 (2005). [CrossRef] [PubMed]
  16. T.-W. Lee and S. K. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13, 9652–9659 (2005). [CrossRef] [PubMed]
  17. G. Veronis and S. Fan, “Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides,” Opt. Express 15, 1211–1221 (2007). [CrossRef] [PubMed]
  18. H. Zhao, X. Huang, and J. Huang, “Novel optical directional coupler based on surface plasmon polaritons,” Physica E (Amsterdam) 40, 3025–3029 (2008). [CrossRef]
  19. R. A. Wahsheh, Z. Lu, and M. A. G. Abushagur, “Nanoplasmonic couplers and splitters,” Opt. Express 17, 19033–19040 (2009). [CrossRef]
  20. Z. Han, L. Liu, and E. Forsberg, “Ultra-compact directional couplers and Mach–Zehnder interferometers employing surface plasmon polaritons,” Opt. Commun. 259, 690–695 (2006). [CrossRef]
  21. B. Wang and G. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett. 29, 1992–1994 (2004). [CrossRef] [PubMed]
  22. B. Prade, J. Y. Vinet, and A. Mysyrowicz, “Guided optical waves in planar heterostructures with negative dielectric constant,” Phys. Rev. B 44, 13556–13572 (1991). [CrossRef]
  23. A. Hossieni and Y. Massoud, “A low-loss metal–insulator–metal plasmonic Bragg reflector,” Opt. Express 14, 11318–11323 (2006). [CrossRef] [PubMed]
  24. A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, “Compact Bragg gratings for long-range surface plasmon polaritons,” J. Lightwave Technol. 24, 912–918 (2006). [CrossRef]
  25. Z. Han, E. Forsberg, and S. He, “Surface plasmon Bragg gratings formed in metal–insulator–metal waveguides,” IEEE Photon. Technol. Lett. 19, 91–93 (2007). [CrossRef]
  26. J. Park, H. Kim, and B. Lee, “High order plasmonic Bragg reflection in the metal–insulator–metal waveguide Bragg grating,” Opt. Express 16, 413–425 (2008). [CrossRef] [PubMed]
  27. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Y. Wang, B. S. Zou, and S. C. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16, 4888–4894 (2008). [CrossRef] [PubMed]
  28. A. Hosseini, H. Nejati, and Y. Massoud, “Modeling and design methodology for metal–insulator–metal plasmonic Bragg reflectors,” Opt. Express 16, 1475–1480 (2008). [CrossRef] [PubMed]
  29. X.-S. Lin and X.-G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33, 2874–2876 (2008). [CrossRef] [PubMed]
  30. X.-S. Lin and X.-G. Huang, “Numerical modeling of a teeth-shaped nanoplasmonic waveguide filter,” J. Opt. Soc. Am. B 26, 1263–1268 (2009). [CrossRef]
  31. Y. Matsuzaki, T. Okamoto, M. Haraguchi, M. Fukui, and M. Nakagaki, “Characteristics of gap plasmon waveguide with stub structures,” Opt. Express 16, 16314–16325 (2008). [CrossRef] [PubMed]
  32. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, J.-Y. Laluet, and W. Ebbesen, “Wavelength selective nanophotonics components utilizing channel plasmon polaritons,” Nano Lett. 7, 880–884 (2007). [CrossRef] [PubMed]
  33. S. Xiao, L. Liu, and M. Qiu, “Resonator channel drop filters in a plasmon-polaritons metal,” Opt. Express 14, 2932–2937 (2006). [CrossRef] [PubMed]
  34. A. Boltasseva, S. I. Bozhevolnyi, T. Sondergaard, T. Nikolajsen, and K. Leosson, “Compact Z-add-drop wavelength filters for long-range surface plasmon polaritons,” Opt. Express 13, 4237–4243 (2005). [CrossRef] [PubMed]
  35. A. Hosseini and Y. Massoud, “Nanoscale surface plasmon based resonator using rectangular geometry,” Appl. Phys. Lett. 90, 181102 (2007). [CrossRef]
  36. J. Tao, X.-G. Huang, X.-S. Lin, Q. Zhang, and X.-P. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17, 13989–13994 (2009). [CrossRef] [PubMed]
  37. B. E. Little, S. T. Chu, H. A. Haus, J. S. Foresi, and J.-P. Laine, “Microring resonator channel dropping filter,” J. Lightwave Technol. 15, 998–1005 (1997). [CrossRef]
  38. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, “Channel drop filters in photonic crystals,” Opt. Express 3, 4–11 (1998). [CrossRef] [PubMed]
  39. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972). [CrossRef]
  40. B. Yun, G. Hu, and Y. Cui, “Theoretical analysis of a nanoscale plasmonic filter based on a rectangular metal–insulator–metal waveguide,” J. Phys. D: Appl. Phys. 43, 385102 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited