OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2743–2749

Performance changes of a grated waveguide at resonance wavelengths next to its band-edges due to modified edge sections

Husin Alatas, Alexander A. Iskandar, Hugo J. W. M. Hoekstra, and May-On Tjia  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2743-2749 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (540 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An efficient numerical scheme developed on the basis of Green’s function method is applied to the investigation of structural effects on the performance of planar grated waveguide at the first resonance wavelengths next to the band-edges. Restricting ourselves to the transverse-electric waves, this study is focused on the effects induced by variations of the grating cell number and the depths of its four outer grooves on both sides. The different patterns of groove depth gradation or apodization considered in this study are all characterized by decreasing depth toward the ends while retaining the longitudinal grating symmetry. The effects of the modifications are expressed in terms of changes in the modal transmittance, reflectance, and out-of-plane scattering loss as well as the group velocity and resonant field enhancement. The most favorable result characterized by 15% transmittance enhancement and 85% loss reduction is achieved for the case with the most gradual changes in the groove depth. It is further shown that, for the investigated range of parameters, both the group velocity and field enhancement can best be improved by increasing the length of the uniform grating, without introducing any modification.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(230.7400) Optical devices : Waveguides, slab

ToC Category:
Diffraction and Gratings

Original Manuscript: May 17, 2010
Revised Manuscript: September 20, 2010
Manuscript Accepted: October 14, 2010
Published: November 18, 2010

Husin Alatas, Alexander A. Iskandar, Hugo J. W. M. Hoekstra, and May-On Tjia, "Performance changes of a grated waveguide at resonance wavelengths next to its band-edges due to modified edge sections," J. Opt. Soc. Am. B 27, 2743-2749 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. D. Joannopoulos, R. Meade, and J. Winn, Photonic Crystals (Princeton University Press, 1995).
  2. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386, 143–149 (1997). [CrossRef]
  3. E. Yablonovitch, “How to be truly photonic,” Science 289, 557–559 (2000). [CrossRef]
  4. J. Skaar, B. Sahlgren, P.-Y. Fonjallaz, H. Storøy, and R. Stubbe, “High-reflectivity fiber-optic bandpass filter designed by use of the iterative solution to the Gel’Fand–Levitan–Marchenko equations,” Opt. Lett. 23, 933–935 (1998). [CrossRef]
  5. J. Skaar and K. M. Risvik, “A genetic algorithm for the inverse problem in synthesis of fiber gratings,” J. Lightwave Technol. 16, 1928–1932 (1998). [CrossRef]
  6. R. Feced, M. N. Zervas, and M. A. Muriel, “An efficient inverse scattering algorithm for the design of nonuniform fibre Bragg gratings,” IEEE J. Quantum Electron. 35, 1105–1115 (1999). [CrossRef]
  7. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg grating by layer peeling,” IEEE J. Quantum Electron. 37, 165–173 (2001). [CrossRef]
  8. A. Lavrinenko, P. Borel, L. Frandsen, M. Thorhauge, A. Harpøth, M. Kristensen, T. Niemi, and H. Chong, “Comprehensive FDTD modelling of photonic crystal waveguide components,” Opt. Express 12, 234–248 (2004). [CrossRef] [PubMed]
  9. T.-T. Kim, S.-G. Lee, H. Y. Park, J.-E. Kim, and C.-S. Kee, “Asymmetric Mach–Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18, 5384–5389 (2010). [CrossRef] [PubMed]
  10. S. Noda, “Recent progresses and future prospects of two- and three-dimensional photonic crystals,” J. Lightwave Technol. 24, 4554–4567 (2006). [CrossRef]
  11. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Y. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12, 1551–1561 (2004). [CrossRef] [PubMed]
  12. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15, 4530–4535 (2007). [CrossRef] [PubMed]
  13. L. Lagonigro, N. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, “Low loss silicon fibers for photonics applications,” Appl. Phys. Lett. 96, 041105 (2010). [CrossRef]
  14. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. F. Gmachl, D. M. Tennant, A. M. Sergent, D. L. Sivco, A. Y. Cho, and F. Capasso, “Quantum cascade surface-emitting photonic crystal laser,” Science 302, 1374–1377 (2003). [CrossRef] [PubMed]
  15. M. Imada, L. H. Lee, M. Okano, S. Kawashima, and S. Noda, “Development of three-dimensional photonic-crystal waveguides at optical-communication wavelengths,” Appl. Phys. Lett. 88, 171107 (2006). [CrossRef]
  16. H. Benisty, C. Weisbuch, D. Labilloy, M. Rattier, C. J. M. Smith, T. F. Krauss, R. M. De La Rue, R. Houdr’e, U. Oesterle, C. Jouanin, and D. Cassagne, “Optical and confinement properties of two-dimensional photonic crystals,” J. Lightwave Technol. 17, 2063–2077 (1999). [CrossRef]
  17. T. C. Kleckner, D. Modotto, A. Locatelli, J. P. Mondia, S. Linden, R. Morandotti, C. De Angelis, C. R. Stanley, H. M. Van Driel, and J. S. Aitchison, “Design, fabrication, and characterization of deep-etched waveguide gratings,” J. Lightwave Technol. 23, 3832–3842 (2005). [CrossRef]
  18. W. C. L. Hopman, R. Dekker, D. Yudistira, W. F. A. Engbers, H. J. W. M. Hoekstra, and R. M. de Ridder, “Fabrication and characterization of high-quality uniform and apodized Si3N4 waveguide gratings using laser interference lithography,” IEEE Photon. Technol. Lett. 18, 1855–1857 (2006). [CrossRef]
  19. W. C. L. Hopman, P. Pottier, D. Yudistira, J. Van Lith, P. V. Lambeck, R. M. De La Rue, A. Driessen, H. J. W. M. Hoekstra, and R. M. de Ridder, “Quasi-one-dimensional photonic crystal as a compact building block for refractometric optical sensors,” IEEE J. Sel. Top. Quantum Electron. 11, 11–16 (2005). [CrossRef]
  20. N. Destouches, B. Sider, A. V. Tishchenko, and O. Parriaux, “Optimization of a waveguide grating for normal TM mode coupling,” Opt. Quantum Electron. 38, 123–131 (2006). [CrossRef]
  21. H. J. W. M. Hoekstra, W. C. L. Hopman, J. Kautz, R. Dekker, and R. M. De Ridder, “A simple coupled mode model for near band-edge phenomena in grated waveguides,” Opt. Quantum Electron. 38, 799–813 (2007). [CrossRef]
  22. J.-W. Mu, H. Zhang, and W.-P. Huang, “Design of waveguide Bragg gratings with strong index corrugations,” J. Lightwave Technol. 26, 1596–1601 (2008). [CrossRef]
  23. J. Čtyroký, S. Helfert, R. Pregla, P. Bientsman, R. Baets, R. M. De Ridder, R. Stoffer, G. Klaasse, J. Petracek, P. Lalanne, J.-P. Hugonin, and R. M. De La Rue, “Bragg waveguide grating as 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34, 455–470 (2002). [CrossRef]
  24. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  25. J. M. Elson and K. Halterman, “Local density of states analysis of surface wave modes on truncated photonic crystal surfaces with nonlinear material,” Opt. Express 12, 4855–4863 (2004). [CrossRef] [PubMed]
  26. M. Paulus and O. J. F. Martin, “Green’s tensor technique for scattering in two dimensional stratified media,” Phys. Rev. E 63, 066615 (2001). [CrossRef]
  27. M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, “Accurate and efficient computation of Green’s tensor for stratified media,” Phys. Rev. E 62, 5797–5807 (2000). [CrossRef]
  28. O. J. F. Martin and N. B. Piller, “Electromagnetic scattering in polarizable backgrounds,” Phys. Rev. E 58, 3909–3915 (1998). [CrossRef]
  29. J. M. Bendickson, J. P. Dowling, and M. Scalora, “Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures,” Phys. Rev. E 53, 4107–4121 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited