OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 12 — Dec. 1, 2010
  • pp: 2750–2758

Efficient non-resonant energy transfer in Nd 3 + -Yb 3 + codoped Ba-Al-metaphosphate glasses

Atul D. Sontakke, Kaushik Biswas, R. Sen, and K. Annapurna  »View Author Affiliations

JOSA B, Vol. 27, Issue 12, pp. 2750-2758 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An efficient Nd 3 + Yb 3 + energy transfer in a new series of alkali-free barium-alumino-metaphosphate glasses with a transfer efficiency reaching up to 95% has been reported here. It is due to the effective phonon assistance arising with the excellent matching of the present host phonon energy with the energy mismatch between Nd 3 + ( F 4 3 / 2 ) and Yb 3 + ( F 2 5 / 2 ) excited levels. The energy transfer microparameters for Nd 3 + Yb 3 + forward and back energy transfers are estimated from the spectral data analysis. A parameter, Φ ET ( = C D A Nd-Yb / C D A Nd-Nd ) , is proposed as a quantitative measure of sensitization ability per unit loss of the donor. The parameter is found to be highest for the presently reported barium-alumino-metaphosphate glasses.

© 2010 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.5680) Lasers and laser optics : Rare earth and transition metal solid-state lasers
(160.2750) Materials : Glass and other amorphous materials
(260.2160) Physical optics : Energy transfer

ToC Category:
Physical Optics

Original Manuscript: September 7, 2010
Revised Manuscript: October 12, 2010
Manuscript Accepted: October 13, 2010
Published: November 18, 2010

Atul D. Sontakke, Kaushik Biswas, R. Sen, and K. Annapurna, "Efficient non-resonant energy transfer in Nd3+-Yb3+ codoped Ba-Al-metaphosphate glasses," J. Opt. Soc. Am. B 27, 2750-2758 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. J. Weber, “Optical properties of Yb3+ and Nd3+-Yb3+ energy transfer in YAlO3,” Phys. Rev. B 4, 3153–3159 (1971). [CrossRef]
  2. R. Reisfeld and Y. Kalisky, “Nd3+ and Yb3+ germanate and tellurite glasses for fluorescence solar energy collectors,” Chem. Phys. Lett. 80, 178–183 (1981). [CrossRef]
  3. D. Jaque, M. O. Ramirez, L. E. Bausà, J. García Solé, E. Cavalli, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in YAl3(BO3)4 nonlinear laser crystal,” Phys. Rev. B 68, 035118 (2003). [CrossRef]
  4. F. Liégard, J. L. Doualan, R. Moncorgé, and M. Bettinelli, “Nd3+→Yb3+ energy transfer in a codoped metaphosphate glass as a model for Yb3+ laser operation around 980 nm,” Appl. Phys. B 80, 985–991 (2005). [CrossRef]
  5. D. F. de Sousa, F. Batalioto, M. J. V. Bell, S. L. Oliveira, and L. A.Nunes, “Spectroscopy of Nd3+ and Yb3+ codoped fluoroindogallate glasses,” J. Appl. Phys. 90, 3308–3313 (2001). [CrossRef]
  6. R. Balda, J. Fernàndez, I. Iparraguirre, and M. Al-Saleh, “Spectroscopic study of Nd3+/Yb3+ in disordered potassium bismuth laser crystals,” Opt. Mater. 28, 1247–1252 (2006). [CrossRef]
  7. Z. Jia, A. Arcangeli, X. Tao, J. Zhang, C. Dong, M. Jiang, L. Bonelli, and M. Tonelli, “Efficient Nd3+→Yb3+ energy transfer in Nd3+, Yb3+:Gd3Ga5O12 multicenter garnet crystal,” J. Appl. Phys. 105, 083113 (2009). [CrossRef]
  8. X. Zou and T. Izumitani, “Excitation energy transfer of Nd3+-Yb3+-Er3+ in several glasses,” J. Ceram. Soc. Jpn. 101, 84–88 (1993). [CrossRef]
  9. C. Lurin, C. Parent, G. Le Flem, and P. Hagenmuller, “Energy transfer in a Nd3+-Yb3+ borate glass,” J. Phys. Chem. Solids 46, 1083–1092 (1985). [CrossRef]
  10. U. Caldiño, D. Jaque, E. Martín-Rodríguez, M. O. Ramírez, J. García Solé, A. Speghini, and M. Bettinelli, “Nd3+→Yb3+ resonant energy transfer in the ferroelectric Sr0.6Ba0.4Nb2O6 laser crystal,” Phys. Rev. B 77, 075121 (2008). [CrossRef]
  11. A. Lupei, V. Lupei, A. Ikesue, and C. Gheorghe, “Spectroscopic and energy transfer investigation of Nd/Yb in Y2O3 transparent ceramics,” J. Opt. Soc. Am. B 27, 1002–1010 (2010). [CrossRef]
  12. G. L. Bourdet, O. Casagrande, N. Deguil-Robin, and B. Le Garrec, “Performances of cryogenic cooled laser based on ytterbium doped sesquioxide ceramics,” J. Phys.: Conf. Ser. 112, 032054 (2008). [CrossRef]
  13. V. V. Ovchinnikov, A. K. Murtazaev, E. A. Khazanov, and A. M. Sergeev, “Equilibrium and highly nonequilibrium states of condensed matter,” Phys. Usp. 51, 955–974 (2008). [CrossRef]
  14. D. Jaque, M. O. Ramirez, L. E. Bausà, A. Speghini, M. Bettinelli, and E. Cavalli, “Influence of Nd3+ and Yb3+ concentration on the Nd3+→Yb3+ energy-transfer efficiency in the YAl3(BO3)4 nonlinear crystal: determination of optimum concentration for laser applications,” J. Opt. Soc. Am. B 21, 1203–1209 (2004). [CrossRef]
  15. M. O. Ramirez, D. Jaque, L. E. Bausà, I. R. Martin, F. Lahoz, E. Cavalli, A. Speghini, and M. Bettinelli, “Temperature dependence of Nd3+↔Yb3+ energy transfer in the YAl3(BO3)4 nonlinear laser crystal,” J. Appl. Phys. 97, 093510 (2005). [CrossRef]
  16. A. Matic, L. Börgesson, A. Wannberg, and R. L. McGreevy, “Structural studies of rare-earth doped phosphate glasses,” Mat. Res. Soc. Symp. Proc. 455, 435–440 (1997). [CrossRef]
  17. A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Concentration quenched luminescence and energy transfer analysis of Nd3+ doped Ba-Al-metaphosphate laser glasses,” Appl. Phys. B 101, 235–244 (2010). [CrossRef]
  18. D. L. Dexter, “A theory of sensitized luminescence in solids,” J. Chem. Phys. 21, 836–850 (1953). [CrossRef]
  19. M. Inokuti and F. Hirayama, “Influence of energy transfer by the exchange mechanism on donor luminescence,” J. Chem. Phys. 43, 1978–1989 (1965). [CrossRef]
  20. J. A. Caird, A. J. Ramponi, and P. R. Staver, “Quantum efficiency and excited-state relaxation dynamics in neodymium-doped phosphate laser glasses,” J. Opt. Soc. Am. B 8, 1391–1403 (1991). [CrossRef]
  21. F. Auzel, “Multiphonon assisted and anti-Stokes and Stokes fluorescence of triply ionized rare-earth ions,” Phys. Rev. B 13, 2809–2817 (1976). [CrossRef]
  22. M. C. Nostrand, R. H. Page, S. A. Payne, L. I. Isaenko, and A. P. Yelisseyev, “Optical properties of Dy3+- and Nd3+-doped KPb2Cl5,” J. Opt. Soc. Am. B 18, 264–276 (2001). [CrossRef]
  23. E. Yahel, O. Hess, and A. A. Hardy, “Modeling and optimization of high-power Nd3+-Yb3+ codoped fiber lasers,” J. Lightwave Technol. 24, 1601–1609 (2006). [CrossRef]
  24. P. Y. Shih, J. Y. Ding, and S. Y. Lee, “P31 MAS-NMR and FTIR analyses on the structure of CuO-containing sodium poly-and metaphosphate glasses,” Mater. Chem. Phys. 80, 391–396 (2003). [CrossRef]
  25. A. D. Sontakke, K. Biswas, A. K. Mandal, and K. Annapurna, “Time resolved fluorescence and energy transfer analysis of Nd3+-Yb3+-Er3+ triply doped Ba-Al-metaphosphate glasses of an eye safe emission (1.54 μm),” J. Fluoresc. 20, 425–434 (2010). [CrossRef]
  26. C. Parent, C. Lurin, G. Le Flem, and P. Hagenmuller, “Nd3+→Yb3+ energy transfer in glasses with composition close to LiLnP4O12 metaphosphate (Ln=La, Nd, Yb),” J. Lumin. 36, 49–55 (1986). [CrossRef]
  27. D. Jaque, J. A. Muñoz, F. Cussó, and J. Garcia Solé, “Quantum efficiency of the YAl3(BO3)4:Nd self-frequency-doubling laser material,” J. Phys. Condens. Matter 10, 7901–7905 (1998). [CrossRef]
  28. V. Lupei, A. Lupei, C. Gheorghe, S. Hau, and A. Ikesue, “Efficient sensitization of Yb3+ emission by Nd3+ in Y2O3 transparent ceramics and the prospect for high-energy lasers,” Opt. Lett. 34, 2141–2143 (2009). [CrossRef] [PubMed]
  29. W. Ryba-Romanowski, S. Goläb, L. Cichosz, and B. Jeżowska-Trzebiatowska, “Influence of temperature and acceptor concentration on energy transfer from Nd3+ to Yb3+ and from Yb3+ to Er3+ in tellurite glass,” J. Non-Cryst. Solids 105, 295–302 (1988). [CrossRef]
  30. B. I. Denker, V. V. Osiko, P. P. Pashinin, and A. M. Prokhorov, “Concentrated neodymium laser glasses (review),” Sov. J. Quantum Electron. 11, 289–296 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited