OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B

| OPTICAL PHYSICS

  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 197–203

Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer

Tsvetanka Babeva, Izabela Naydenova, Dana Mackey, Suzanne Martin, and Vincent Toal  »View Author Affiliations


JOSA B, Vol. 27, Issue 2, pp. 197-203 (2010)
http://dx.doi.org/10.1364/JOSAB.27.000197


View Full Text Article

Enhanced HTML    Acrobat PDF (523 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A theoretical model for formation of a short-exposure holographic grating is presented. The model accounts for both monomer and polymer diffusion and distinguishes between short polymer chains capable of diffusing and long polymer chains that are immobile. It is shown that the experimentally observed decrease of diffraction efficiency at higher spatial frequency can be predicted by assuming diffusion of short-chain polymers away from the bright fringes. The time evolution of the refractive-index modulation after a short exposure is calculated and compared with experimental results. The effects of diffusion coefficients, polymerization rates, intensity, and spatial frequency of recording on the properties of weak diffraction gratings are investigated by numerical simulations.

© 2010 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(050.7330) Diffraction and gratings : Volume gratings
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(160.5470) Materials : Polymers

ToC Category:
Holography

History
Original Manuscript: July 22, 2009
Revised Manuscript: October 29, 2009
Manuscript Accepted: November 13, 2009
Published: January 7, 2010

Citation
Tsvetanka Babeva, Izabela Naydenova, Dana Mackey, Suzanne Martin, and Vincent Toal, "Two-way diffusion model for short-exposure holographic grating formation in acrylamide-based photopolymer," J. Opt. Soc. Am. B 27, 197-203 (2010)
http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-27-2-197


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J. Trout, J. J. Schmieg, W. Y. Gambogi, and A. M. Weber, “Optical photopolymers: design and applications,” Adv. Mater. (Weinheim, Ger.) 10, 1219-1224 (1998). [CrossRef]
  2. A. Sullivan, M. Grabowski, and R. McLeod, “Three-dimensional direct-write lithography into photopolymer,” Appl. Opt. 46, 295-301 (2007). [CrossRef] [PubMed]
  3. S. Guntaka, V. Toal, and S. Martin, “Holographically recorded photopolymer diffractive optical element for holographic and electronic speckle-pattern interferometry,” Appl. Opt. 41, 7475-7479 (2002). [CrossRef] [PubMed]
  4. H. Sherif, I. Naydenova, S. Martin, C. McGinn, and V. Toal, “Characterization of an acrylamide-based photopolymer for data storage utilizing holographic angular multiplexing,” J. Opt. A, Pure Appl. Opt. 7, 255-261 (2005). [CrossRef]
  5. http://www.inphase-technologies.com/.
  6. http://www.aprilisinc.com/.
  7. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer materials,” J. Mod. Opt. 41, 1929-1939 (1994). [CrossRef]
  8. I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide-based photopolymer surface,” Opt. Express 13, 4878-4889 (2005). [CrossRef] [PubMed]
  9. Tz. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for real-time characterization of diffusion properties of polymerisable systems,” Opt. Express 16, 8487-8497 (2008). [CrossRef] [PubMed]
  10. S. Gallego, A. Márquez, S. Marini, E. Fernández, M. Ortuño, and I. Pascual, “In dark analysis of PVA/AA materials at very low spatial frequencies: phase modulation evolution and diffusion estimation,” Opt. Express 17, 18279-18291 (2009). [CrossRef] [PubMed]
  11. S. Piazzola and B. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147-1157 (2000). [CrossRef]
  12. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427-3435 (2002). [CrossRef] [PubMed]
  13. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997). [CrossRef]
  14. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, and R. F. Madrigal, “Holography as a technique for the study of photopolymerization kinetics in dry polymeric films with a nonlinear response,” Appl. Opt. 38, 955-962 (1999). [CrossRef]
  15. J. H. Kwon, H. C. Hwang, and K. C. Woo, “Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,” J. Opt. Soc. Am. B 16, 1651-1657 (1999). [CrossRef]
  16. C. Neipp, S. Gallego, M. Ortuno, A. Marquez, M. L. Alvarez, A. Belendez, and I. Pascual, “First-harmonic diffusion-based model applied to a polyvinyl-alcohol-acrylamide-based photopolymer,” J. Opt. Soc. Am. B 20, 2052-2060 (2003). [CrossRef]
  17. J. T. Sheridan and J. R. Lawrence, “Nonlocal-response diffusion model of holographic recording in photopolymer,” J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
  18. J. T. Sheridan, M. Downey, and F. T. O'Neill, “Diffusion-based model of holographic grating formation in photopolymers: generalized nonlocal material responses,” J. Opt. A, Pure Appl. Opt. 3, 477-488 (2001). [CrossRef]
  19. M. R. Gleeson, D. Sabol, S. Liu, C. E. Close, J. V. Kelly, and J. T. Sheridan, “Improvement of the spatial frequency response of photopolymer materials by modifying polymer chain length,” J. Opt. Soc. Am. B 25, 396-406 (2008). [CrossRef]
  20. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004). [CrossRef] [PubMed]
  21. S. Martin, I. Naydenova, R. Jallapuram, R. Howard, and V. Toal, “Two-way diffusion model for the recording mechanism in a self-developing dry acrylamide photopolymer,” Proc. SPIE 6252, 62525-625217 (2006).
  22. R. Jallapuram, I. Naydenova, H. J. Byrne, S. Martin, R. Howard, and V. Toal, “Raman spectroscopy for the characterization of the polymerization rate in an acrylamide-based photopolymer,” Appl. Opt. 47, 206-212 (2008). [CrossRef] [PubMed]
  23. P. Munk and T. M. Aminabhavi, Introduction to Macromolecular Science (Wiley, 2002).
  24. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J. Mod. Opt. 45, 1465-1477 (1998). [CrossRef]
  25. C. Grossman, H.-G. Roos, and M. Stynes, Numerical Treatment of Partial Differential Equations (Springer, 2007). [CrossRef]
  26. I. Naydenova, R. Jallapuram, V. Toal, and S. Martin, “A visual indication of environmental humidity using a color-changing hologram recorded in a self-developing photopolymer,” Appl. Phys. Lett. 92, 031109 (2008). [CrossRef]
  27. I. Naydenova, H. Sherif, S. Martin, R. Jallapuram, and V. Toal, “A Holographic Sensor,” Patent No. WO2007060648 (2007).
  28. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757-5768 (1997). [CrossRef] [PubMed]
  29. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  30. T. Babeva, R. Todorov, S. Mintova, T. Yovcheva, I. Naydenova, and V. Toal, “Optical properties of silica-MFI-doped acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 11, 024015 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited