OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 208–214

Formation and interaction characteristics of two-component spatial weak-light soliton in a four-level double-Λ type system

Yanchao She, Denglong Wang, Weixi Zhang, Zhangming He, and Jianwen Ding  »View Author Affiliations

JOSA B, Vol. 27, Issue 2, pp. 208-214 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (1028 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By using the multiple-scale method, we study analytically the formation and stability of two-component spatial optical solitons in a cold, lifetime-broadened resonant four-level double-Λ type atomic system via electromagnetically induced transparency. It is shown that stable two-component ( 1 + 1 ) dimension spatial optical solitons with extremely weak light intensity can occur, which is different from the passive ones with photorefractive and planar waveguides. Furthermore, the interaction characteristics between two solitons are studied by numerical simulations. We find that the collisional dynamics and the energy transfer of the two solitons are closely correlated with their relative phase shift. Our results may provide a good idea to obtain useful spatial optical solitons for application in optical soliton communications.

© 2010 Optical Society of America

OCIS Codes
(160.4330) Materials : Nonlinear optical materials
(190.6135) Nonlinear optics : Spatial solitons

ToC Category:
Nonlinear Optics

Original Manuscript: August 12, 2009
Revised Manuscript: November 4, 2009
Manuscript Accepted: November 5, 2009
Published: January 8, 2010

Yanchao She, Denglong Wang, Weixi Zhang, Zhangming He, and Jianwen Ding, "Formation and interaction characteristics of two-component spatial weak-light soliton in a four-level double-Λ type system," J. Opt. Soc. Am. B 27, 208-214 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423-444 (1996). [CrossRef]
  2. Y. S. Kivshar and B. Luther-Davies, “Dark optical solitons: physics and applications,” Phys. Rep. 298, 81-197 (1998). [CrossRef]
  3. G. A. Swartzlander, D. R. Andersen, J. J. Regan, H. Yin, and A. E. Kaplan, “Spatial dark-soliton stripes and grids in self-defocusing materials,” Phys. Rev. Lett. 66, 1583-1586 (1991). [CrossRef] [PubMed]
  4. G. I. Stegeman and M. Segev, “Optical spatial solitons and their interactions: universality and diversity,” Science 286, 1518-1523 (1999). [CrossRef] [PubMed]
  5. Y. S. Kivshar and G. I. Stegeman, “Spatial optical solitons,” Opt. Photonics News 13, 59-63 (2002). [CrossRef]
  6. G. X. Huang, K. J. Jiang, M. G. Payne, and L. Deng, “Formation and propagation of coupled ultraslow optical soliton pairs in a cold three-state double-Λ system,” Phys. Rev. E 73, 056606 (2006). [CrossRef]
  7. M. Fleischhauer, A. Imamŏglu, and J. P. Marangos, “Electromagnetically induced transparency: optics in coherent media,” Rev. Mod. Phys. 77, 633-673 (2005). [CrossRef]
  8. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50, 36-42 (1997). [CrossRef]
  9. L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne, “Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves,” Phys. Rev. Lett. 88, 143902 (2002). [CrossRef] [PubMed]
  10. M. Xiao, Y. Q. Li, S. Z. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74, 666-669 (1995). [CrossRef] [PubMed]
  11. H. Kang and Y. F. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91, 093601 (2003). [CrossRef] [PubMed]
  12. T. Hong, M. W. Jack, M. Yamashita, and T. Mukai, “Enhanced Kerr nonlinearity for self-action via atomic coherence in a four-level atomic system,” Opt. Commun. 214, 371-380 (2002). [CrossRef]
  13. T. Hong, “Spatial weak-light solitons in an electromagnetically induced nonlinear waveguide,” Phys. Rev. Lett. 90, 183901 (2003). [CrossRef] [PubMed]
  14. H. Michinel, M. J. Paz-Alonso, and V. M. Perez-Garcia, “Turning light into a liquid via atomic coherence,” Phys. Rev. Lett. 96, 023903 (2006). [CrossRef] [PubMed]
  15. C. Hang, G. X. Huang, and L. Deng, “Stable high-dimensional spatial weak-light solitons in a resonant three-state atomic system,” Phys. Rev. E 74, 046601 (2006). [CrossRef]
  16. P. R. Hemmer, D. P. Katz, J. Donoghue, M. Cronin-Golomb, M. S. Shahriar, and P. Kumar, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20, 982-984 (1995). [CrossRef] [PubMed]
  17. Y. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21, 1064-1066 (1996). [CrossRef] [PubMed]
  18. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, “Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas,” Phys. Rev. Lett. 82, 5229-5232 (1999). [CrossRef]
  19. D. A. Braje, V. Bali, S. Goda, G. Y. Yin, and S. E. Harris, “Frequency mixing using electromagnetically induced transparency in cold atoms,” Phys. Rev. Lett. 93, 183601 (2004). [CrossRef] [PubMed]
  20. Y. Zhang, B. Anderson, and M. Xiao, “Efficient energy transfer between four-wave-mixing and six-wave-mixing processes via atomic coherence,” Phys. Rev. A 77, 061801 (2008). [CrossRef]
  21. Y. Du, Y. Zhang, C. Zuo, C. Li, Z. Nie, H. Zheng, M. Shi, R. Wang, J. Song, K. Lu, and M. Xiao, “Controlling four-wave mixing and six-wave mixing in a multi-Zeeman sublevel atomic system with electromagnetically induced transparency,” Phys. Rev. A 79, 063839 (2009). [CrossRef]
  22. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombesi, “Polarization qubit phase gate in driven atomic media,” Phys. Rev. Lett. 90, 197902 (2003). [CrossRef] [PubMed]
  23. D. Petrosyan, “Towards deterministic optical quantum computation with coherently driven atomic ensembles,” J. Opt. B. 7, S141-S151 (2005). [CrossRef]
  24. C. Hang, Y. Li, L. Ma, and G. X. Huang, “Three-way entanglement and three-qubit phase gate based on a coherent six-level atomic system,” Phys. Rev. A 74, 012319 (2006). [CrossRef]
  25. Y. Wu and L. Deng, “Ultraslow bright and dark optical solitons in a cold three-state medium,” Opt. Lett. 29, 2064-2066 (2004). [CrossRef] [PubMed]
  26. G. X. Huang, L. Deng, and M. G. Payne, “Dynamics of ultraslow optical solitons in a cold three-state atomic system,” Phys. Rev. E 72, 016617 (2005). [CrossRef]
  27. L. Deng, M. G. Payne, G. X. Huang, and E. W. Hagley, “Formation and propagation of matched and coupled ultraslow optical soliton pairs in a four-level double-Λ system,” Phys. Rev. E 72, 055601(R) (2005). [CrossRef]
  28. J. Wang, C. Hang, and G. Huang, “Weak-light gap solitons in a resonant three-level system,” Phys. Lett. A 366, 528-533 (2007). [CrossRef]
  29. W. X. Yang, J. M. Hou, and R. K. Lee, “Ultraslow bright and dark solitons in semiconductor quantum wells,” Phys. Rev. A 77, 033838 (2008). [CrossRef]
  30. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, “Spatial consequences of electromagnetically induced transparency: observation of electromagnetically induced focusing,” Phys. Rev. Lett. 74, 670-673 (1995). [CrossRef] [PubMed]
  31. C. Hang, V. V. Konotop, and G. X. Huang, “Spatial solitons and instabilities of light beams in a three-level atomic medium with a standing-wave control field,” Phys. Rev. A 79, 033826 (2009). [CrossRef]
  32. X. Wu, X. T. Xie, and X. X. Yang, “Dark and bright vortex solitons in electromagnetically induced transparent media,” J. Phys. B 39, 3263-3273 (2006). [CrossRef]
  33. X. T. Xie, W. B. Li, and X. X. Yang, “Bright, dark, bistable bright, and vortex spatial-optical solitons in a cold three-state medium,” J. Opt. Soc. Am. B 23, 1609-1614 (2006). [CrossRef]
  34. H. J. Li and G. X. Huang, “Two-component spatial optical solitons in a four-state ladder system via electromagnetically induced transparency,” Phys. Lett. A 372, 4127-4134 (2008). [CrossRef]
  35. B. Hu, G. X. Huang, and M. G. Velarde, “Dynamics of coupled gap solitons in diatomic lattices with cubic and quartic nonlinearities,” Phys. Rev. E 62, 2827-2839 (2000). [CrossRef]
  36. F. Lu, Q. Lin, W. H. Knox, and G. P. Agrawal, “Vector soliton fission,” Phys. Rev. Lett. 93, 183901 (2004). [CrossRef] [PubMed]
  37. Z. G. Chen, A. Bezryadina, and I. Makasyuk, “Observation of two-dimensional lattice vector solitons,” Opt. Lett. 29, 1656-1658 (2004). [CrossRef] [PubMed]
  38. C. R. Menyuk, “Stability of solitons in birefringent optical fibers. I: Equal propagation amplitudes,” Opt. Lett. 12, 614-616 (1987). [CrossRef] [PubMed]
  39. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, “Optical solitary waves induced by cross-phase modulation,” Opt. Lett. 13, 871-873 (1988). [CrossRef] [PubMed]
  40. V. V. Afanasyev, Y. S. Kivshar, V. V. Konotop, and V. N. Serkin, “Dynamics of coupled dark and bright optical solitons,” Opt. Lett. 14, 805-807 (1989). [CrossRef] [PubMed]
  41. Y. S. Kivshar and S. K. Turitsyn, “Vector dark solitons,” Opt. Lett. 18, 337-339 (1993). [CrossRef] [PubMed]
  42. C. Hang and G. Huang, “Weak-light ultraslow vector solitons via electromagnetically induced transparency,” Phys. Rev. A 77, 033830 (2008). [CrossRef]
  43. L. G. Si, W. X. Yang, and X. X. Yang, “Ultraslow temporal vector optical solitons in a cold four-level tripod atomic system,” J. Opt. Soc. Am. B 26, 478-486 (2009). [CrossRef]
  44. J. S. Aitchison, A. M. Weiner, Y. Silberberg, M. K. Oliver, J. L. Jackel, D. E. Leaird, E. M. Vogel, and P. W. E. Smith, “Observation of spatial optical solitons in a nonlinear glass waveguide,” Opt. Lett. 15, 471-473 (1990). [CrossRef] [PubMed]
  45. W. J. Liu, B. Tian, H. Q. Zhang, L. L. Li, and Y. S. Xue, “Soliton interaction in the higher-order nonlinear Schrödinger equation investigated with Hirota's bilinear method,” Phys. Rev. E 77, 066605 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited