OSA's Digital Library

Journal of the Optical Society of America B

Journal of the Optical Society of America B


  • Editor: Henry van Driel
  • Vol. 27, Iss. 2 — Feb. 1, 2010
  • pp: 222–227

The role of nonlinear optical absorption in narrowband difference-frequency terahertz-wave generation

Matteo Cherchi, Saverio Bivona, Alfonso C. Cino, Alessandro C. Busacca, and Roberto L. Oliveri  »View Author Affiliations

JOSA B, Vol. 27, Issue 2, pp. 222-227 (2010)

View Full Text Article

Enhanced HTML    Acrobat PDF (221 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a general analysis of the influence of nonlinear optical absorption on terahertz generation via optical-difference frequency generation when reaching for the quantum conversion efficiency limit. By casting the equations governing the process in a suitably normalized form, including either two-photon- or three-photon absorption terms, we have been able to plot universal charts for phase-matched optical-to-terahertz conversion for different values of the nonlinear absorption coefficients. We apply our analysis to some experiments reported to date in order to understand to what extent multiphoton absorption could have played a role and also to predict the maximum achievable conversion efficiency at higher peak pump intensities.

© 2010 Optical Society of America

OCIS Codes
(190.4180) Nonlinear optics : Multiphoton processes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(230.6080) Optical devices : Sources

ToC Category:
Nonlinear Optics

Original Manuscript: September 30, 2009
Revised Manuscript: October 29, 2009
Manuscript Accepted: November 6, 2009
Published: January 11, 2010

Matteo Cherchi, Saverio Bivona, Alfonso C. Cino, Alessandro C. Busacca, and Roberto L. Oliveri, "The role of nonlinear optical absorption in narrowband difference-frequency terahertz-wave generation," J. Opt. Soc. Am. B 27, 222-227 (2010)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nature 1, 97-105 (2007).
  2. Y.J.Ding, Q.Hu, M.Kock, and C.E.Stutz, eds., “Special issue on THz materials, devices, and applications,” IEEE J. Sel. Top. Quantum Electron. 14, 257-520 (2008).
  3. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  4. X. Mu, Y. J. Ding, and I. B. Zotova, “Exploring fundamental limits to terahertz generation in electro-optic materials: from bulk to nanolayers,” Laser Phys. 18, 530-546 (2008). [CrossRef]
  5. Y. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13, 705-720 (2007). [CrossRef]
  6. Y. J. Ding, “Quasi-single-cycle terahertz pulses based on broadband-phase-matched difference-frequency generation in second-order nonlinear medium: high output powers and conversion efficiencies,” IEEE J. Sel. Top. Quantum Electron. 10, 1171-1179 (2004). [CrossRef]
  7. V. Ya. Gaivoronskii, M. M. Nazarov, D. A. Sapozhnikov, E. V. Shepelyavyi, S. A. Shkel'nyuk, A. P. Shkurinov, and A. V. Shuvaev, “Competition between linear and nonlinear processes during generation of pulsed terahertz radiation in a ZnTe crystal,” Quantum Electron. 35, 407-414 (2005). [CrossRef]
  8. Q. Xing, L. Lang, Z. Tian, N. Zhang, S. Li, K. Wang, L. Chai, and Q. Wang, “The effect of two-photon absorption and optical excitation area on the generation of THz radiation,” Opt. Commun. 267, 422-426 (2006). [CrossRef]
  9. M. Cherchi, A. Taormina, A. C. Busacca, R. L. Oliveri, S. Bivona, A. C. Cino, S. Stivala, A. Riva Sanseverino, and C. Leone, “Exploiting the optical quadratic nonlinearity of zinc-blende semiconductors for guided-wave terahertz generation: a material comparison,” IEEE J. Quantum Electron., http://arxiv.org/abs/0906.3683.
  10. M. Cherchi, S. Bivona, A. C. Cino, A. C. Busacca, and R. L. Oliveri are preparing a manuscript to be called “Universal charts for optical difference frequency generation in the terahertz domain.” http://arxiv.org/abs/0906.3697.
  11. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  12. A. Yariv, “Coupled-mode theory for guided-wave optics,” IEEE J. Quantum Electron. 9, 919-933 (1973). [CrossRef]
  13. C. H. Henry and C. G. B. Garrett, “Theory of parametric gain near a lattice resonance,” Phys. Rev. 171, 1058-1064 (1968). [CrossRef]
  14. J. R. Morris and Y. R. Shen, “Theory of far-infrared generation by optical mixing,” Phys. Rev. A 15, 1143-1156 (1977). [CrossRef]
  15. K. L. Vodopyanov, “Optical generation of narrow-band terahertz packets in periodically-inverted electro-optic crystals: conversion efficiency and optimal laser pulse format,” Opt. Express 14, 2263-2276 (2006). [CrossRef] [PubMed]
  16. V. Nathan, A. H. Guenther, and S. S. Mitra, “Review of multiphoton absorption in crystalline solids,” J. Opt. Soc. Am. B 2, 294-316 (1985). [CrossRef]
  17. M. Cherchi, S. Stivala, A. Pasquazi, A. C. Busacca, S. Riva Sanseverino, A. C. Cino, L. Colace, and G. Assanto, “Second-harmonic generation in surface periodically poled lithium niobate waveguides: on the role of multiphoton absorption,” Appl. Phys. B 93, 559-565 (2008). [CrossRef]
  18. A. Villeneuve, C. C. Yang, G. I. Stegeman, C. N. Ironside, G. Scelsi, and R. M. Osgood, “Nonlinear absorption in a GaAs waveguide just above half the band gap,” IEEE J. Quantum Electron. 30, 1172-1175 (1994). [CrossRef]
  19. R. Jones, A. Liu, H. Rong, and M. Paniccia, “Lossless optical modulation in a silicon waveguide using stimulated Raman scattering,” Opt. Express 13, 1716-1723 (2005). [CrossRef] [PubMed]
  20. W. C. Hurlbut, Y.-S. Lee, K. L. Vodopyanov, P. S. Kuo, and M. M. Fejer, “Multiphoton absorption and nonlinear refraction of GaAs in the mid-infrared,” Opt. Lett. 32, 668-670 (2007). [CrossRef] [PubMed]
  21. K. R. Allakhverdiev, T. Baykara, S. Joosten, E. Günay, A. A. Kaya, A. Kulibekov, A. Seilmeier, and E. Yu. Salaev, “Anisotropy of two-photon absorption in gallium selenide at 1064 nm,” Opt. Commun. 261, 60-64 (2006). [CrossRef]
  22. I. B. Zotova and Y. J. Ding, “Spectral measurements of two-photon absorption coefficients for CdSe and GaSe crystals,” Appl. Opt. 40, 6654-6658 (2001). [CrossRef]
  23. J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hulburt, “Terahertz sources based on intracavity parametric down-conversion in quasi-phase-matched Gallium Arsenide,” IEEE J. Sel. Top. Quantum Electron. 14, 354-362 (2008). [CrossRef]
  24. K. L. Vodopyanov, “Optical THz-wave generation with periodically-inverted GaAs,” Laser Photonics Rev. 2, 11-25 (2008). [CrossRef]
  25. T. T. Kajava and A. L. Gaeta, “Q switching of a diode-pumped Nd:YAG laser with GaAs,” Opt. Lett. 21, 1244-1246 (1996). [CrossRef] [PubMed]
  26. N. R. Shetty, M. F. Becker, and R. M. Walser, “An anomalous absorption model to account for accumulation in N-on-1 damage in Si and GaAs,” in Laser Induced Damage in Optical Materials: 1986H.E.Bennett, A.H.Guenther, D.Milam, and B.E.Newman, eds. (ASTM International, 1988), pp. 634-648. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited